• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-Destructive Measurement of Rice Amylose Content Based on Image Processing and Artificial Neural Networks (ANN) Model

    Thumbnail
    View/Open
    Non-Destructive Measurement of Rice Amylose Content Based on Image Processing and Artificial Neural Networks (ANN) Model.pdf (2.162Mb)
    Date
    2022-12-02
    Author
    SAPUTRA, Tri Wahyu
    WIJAYANTO, Yagus
    RISTIYANA, Suci
    PURNAMASARI, Ika
    MUHLISON, Wildan
    Metadata
    Show full item record
    Abstract
    The purpose of this study was to develop a method of measuring the amylose content of rice using image processing techniques and an Artificial Neural Network (ANN) model. The rice samples came from six varieties, namely Way Apo Buru, Mapan P05, IR-64, Cibogo, Inpari IR Nutri Zinc, and Inpari 33. The amylose content was measured by laboratory tests and the color intensity was measured based on the RGB (Red, Green, Blue). The ANN model will correlate the RGB color intensity as input with the amylose content as the output. The ANN model used is backpropagation type with 3 input layer nodes and 2 hidden layers with 3-5-5-1 architecture. Variations in the training model used are 27 variations of the activation function. The amount of data used for model training of 30 data while for validation of 12 data. The best ANN model is determined from the high value of accuracy (100%-MAPE) and the value of coefficient of determination (R2). The results showed the best network architecture on the activation function purelin-logsig-tansig. The R2 value on the best training and validation results of 0.98 and 0.66 while the accuracy values for the best training and validation results of 98.15 and 66.82. The validation results show that the developed non-destructive method can be used to quickly and accurately measure the amylose value of rice based on RGB color value. The test results show that the non-destructive method developed cannot be used to measure the amylose content of rice quickly and accurately based on the RGB color intensity, so it needs further development.
    URI
    https://repository.unej.ac.id/xmlui/handle/123456789/114458
    Collections
    • LSP-Jurnal Ilmiah Dosen [7410]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository