• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of PCA-CNN (Principal Component Analysis – Convolutional Neural Networks) Method on Sentinel-2 Image Classification for Land Cover Mapping

    Thumbnail
    View/Open
    FMIPA_Application of PCA-CNN (Principal Component Analysis – Convolutional Neural Networks) Method on Sentinel-2 Image Classification for Land Cover Mapping (1).pdf (1.369Mb)
    Date
    2022-08-01
    Author
    PRADANA, Ahmad Rizqi
    HADI, Alfian Futuhul
    INDARTO, Indarto
    Metadata
    Show full item record
    Abstract
    Land cover information based on remote sensing imagery is effective information for land use management. The use of Sentinel-2 imagery is considered to be able to provide better information on land cover because it has a spatial accuracy of 10 meters. Convolutional Neural Networks is one of the deep learning methods that can be used for image interpretation in order to obtain image classification results which will later obtain information about land cover. PCA-CNN (Principal Component Analysis-Convolutional Neural Network) is a development method of the Convolutional Neural Network method which gives special treatment to the dimension reduction process in the input data. The dimension reduction process is carried out by utilizing the PCA method so that the data processing process becomes faster without losing important information so that better method performance is obtained. The PCA-CNN method is implemented on a dataset of the Situbondo district which is classified into five land cover classes. The results of the PCA-CNN method have an Overall Accuracy of 94.4% and Kappa Indeks 0,92 with 100 epochs of repeated experiments.
    URI
    https://repository.unej.ac.id/xmlui/handle/123456789/113570
    Collections
    • LSP-Jurnal Ilmiah Dosen [7389]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository