• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Another Antimagic Conjecture

    Thumbnail
    View/Open
    FMIPA_Another Antimagic Conjecture.pdf (1.571Mb)
    Date
    2021-11-02
    Author
    SIMANJUNTAK, Rinovia
    NADEAK, Tamaro
    YASIN, Fuad
    WIJAYA, Kristiana
    HINDING, Nurdin
    SUGENG, Kiki Ariyanti
    Metadata
    Show full item record
    Abstract
    An antimagic labeling of a graph G is a bijection f : E(G) → {1, . . . , |E(G)|} such that the weights w(x) = ∑y∼x f(y) distinguish all vertices. A well-known conjecture of Hartsfield and Ringel (1990) is that every connected graph other than K2 admits an antimagic labeling. For a set of distances D, a D-antimagic labeling of a graph G is a bijection f : V(G) → {1, . . . , |V(G)|} such that the weight ω(x) = ∑y∈ND(x) f(y) is distinct for each vertex x, where ND(x) = {y ∈ V(G)|d(x, y) ∈ D} is the D-neigbourhood set of a vertex x. If ND(x) = r, for every vertex x in G, a graph G is said to be (D,r)-regular. In this paper, we conjecture that a graph admits a D-antimagic labeling if and only if it does not contain two vertices having the same D-neighborhood set. We also provide evidence that the conjecture is true. We present computational results that, for D = {1}, all graphs of order up to 8 concur with the conjecture. We prove that the set of (D,r)-regular D-antimagic graphs is closed under union. We provide examples of disjoint union of symmetric (D,r)-regular that are D-antimagic and examples of disjoint union of non-symmetric non-(D,r)-regular graphs that are D-antimagic. Furthermore, lastly, we show that it is possible to obtain a D-antimagic graph from a previously known distance antimagic graph
    URI
    https://repository.unej.ac.id/xmlui/handle/123456789/112307
    Collections
    • LSP-Jurnal Ilmiah Dosen [7406]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository