On the local irregularity vertex coloring of volcano, broom, parachute, double broom and complete multipartite graphs
dc.contributor.author | KRISTIANA, Arika Indah | |
dc.contributor.author | NIKMAH, Nafidatun | |
dc.contributor.author | DAFIK, Dafik | |
dc.contributor.author | ALFARISI, Ridho | |
dc.contributor.author | HASAN, M. Ali | |
dc.contributor.author | SLAMIN, Slamin | |
dc.date.accessioned | 2022-10-19T02:19:17Z | |
dc.date.available | 2022-10-19T02:19:17Z | |
dc.date.issued | 2021-09-05 | |
dc.identifier.uri | https://repository.unej.ac.id/xmlui/handle/123456789/110230 | |
dc.description.abstract | Let G = (V,E) be a simple, finite, undirected, and connected graph with vertex set V (G) and edge set E(G). A bijection l : V (G) → {1, 2,...,k} is label function l if opt(l) = min{max(li) : li vertex irregular labeling} and for any two adjacent vertices u and v, w(u) ̸= w(v) where w(u) = P v∈N(u) l(v) and N(u) is set of vertices adjacent to v. w is called local irregularity vertex coloring. The minimum cardinality of local irregularity vertex coloring of G is called chromatic number local irregular denoted by χlis(G). In this paper, we verify the exact values of volcano, broom, parachute, double broom and complete multipartite graphs. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | World Scientific Publishing Company | en_US |
dc.subject | Local irregular | en_US |
dc.subject | chromatic number | en_US |
dc.subject | chromatic number local irregular | en_US |
dc.title | On the local irregularity vertex coloring of volcano, broom, parachute, double broom and complete multipartite graphs | en_US |
dc.type | Article | en_US |
Files in this item
This item appears in the following Collection(s)
-
LSP-Jurnal Ilmiah Dosen [7301]
Koleksi Jurnal Ilmiah Dosen