Show simple item record

dc.contributor.authorALFARISI, Ridho
dc.contributor.authorKRISTIANA, Arika Indah
dc.contributor.authorALBIRRI, Ermita Rizki
dc.contributor.authorADAWIYAH, Robiatul
dc.contributor.authorDAFIK, Dafik
dc.date.accessioned2020-06-25T03:20:04Z
dc.date.available2020-06-25T03:20:04Z
dc.date.issued2019-06-09
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/99361
dc.description.abstractAll graphs in this paper are nontrivial and connected graph. Let 𝑓 ∶ 𝑉 (𝐺) → *1,2, … , 𝑘+ be a vertex coloring of a graph 𝐺where two adjacent vertices may be colored the same color. Consider the color classes Π = *𝐶 , 𝐶 , … , 𝐶 +. For a vertex 𝑣of 𝐺, the representation color of 𝑣is the 𝑘-vector 𝑟(𝑣|Π) = (𝑑(𝑣, , 𝐶 ), 𝑑(𝑣, 𝐶 ), … , 𝑑(𝑣, 𝐶 )), where 𝑑(𝑣, 𝐶 ) = min *𝑑(𝑣, 𝑐); 𝑐 ∈ 𝐶 + . If 𝑟(𝑢|Π) ≠ 𝑟(𝑣|Π) for every two adjacent vertices 𝑢and 𝑣of 𝐺, then 𝑓is a metric coloring of 𝐺. The minimum 𝑘for which 𝐺has a metric 𝑘-coloring is called the metric chromatic number of 𝐺and is denoted by 𝜇(𝐺). The metric chromatic numbers of unicyclic graphs namely tadpole graphs, cycle with 𝑚-pendants, sun graphs, cycle with two pendants, subdivision of sun graphs.en_US
dc.language.isoenen_US
dc.publisherINTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 06, JUNE 2019en_US
dc.subjectMetric coloringen_US
dc.subjectmetric chromatic numberen_US
dc.subjectunicyclic graphsen_US
dc.titleMetric Chromatic Number of Unicyclic Graphsen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI0210101#Pendidikan Matematika
dc.identifier.nidnNIDN0007119401
dc.identifier.nidnNIDN0002057606
dc.identifier.nidnNIDN0027029201
dc.identifier.nidnNIDN0031079201
dc.identifier.nidnNIDN0001016827


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record