Metric Chromatic Number of Unicyclic Graphs
dc.contributor.author | ALFARISI, Ridho | |
dc.contributor.author | KRISTIANA, Arika Indah | |
dc.contributor.author | ALBIRRI, Ermita Rizki | |
dc.contributor.author | ADAWIYAH, Robiatul | |
dc.contributor.author | DAFIK, Dafik | |
dc.date.accessioned | 2020-06-25T03:20:04Z | |
dc.date.available | 2020-06-25T03:20:04Z | |
dc.date.issued | 2019-06-09 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/99361 | |
dc.description.abstract | All graphs in this paper are nontrivial and connected graph. Let 𝑓 ∶ 𝑉 (𝐺) → *1,2, … , 𝑘+ be a vertex coloring of a graph 𝐺where two adjacent vertices may be colored the same color. Consider the color classes Π = *𝐶 , 𝐶 , … , 𝐶 +. For a vertex 𝑣of 𝐺, the representation color of 𝑣is the 𝑘-vector 𝑟(𝑣|Π) = (𝑑(𝑣, , 𝐶 ), 𝑑(𝑣, 𝐶 ), … , 𝑑(𝑣, 𝐶 )), where 𝑑(𝑣, 𝐶 ) = min *𝑑(𝑣, 𝑐); 𝑐 ∈ 𝐶 + . If 𝑟(𝑢|Π) ≠ 𝑟(𝑣|Π) for every two adjacent vertices 𝑢and 𝑣of 𝐺, then 𝑓is a metric coloring of 𝐺. The minimum 𝑘for which 𝐺has a metric 𝑘-coloring is called the metric chromatic number of 𝐺and is denoted by 𝜇(𝐺). The metric chromatic numbers of unicyclic graphs namely tadpole graphs, cycle with 𝑚-pendants, sun graphs, cycle with two pendants, subdivision of sun graphs. | en_US |
dc.language.iso | en | en_US |
dc.publisher | INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 06, JUNE 2019 | en_US |
dc.subject | Metric coloring | en_US |
dc.subject | metric chromatic number | en_US |
dc.subject | unicyclic graphs | en_US |
dc.title | Metric Chromatic Number of Unicyclic Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.kodeprodi | KODEPRODI0210101#Pendidikan Matematika | |
dc.identifier.nidn | NIDN0007119401 | |
dc.identifier.nidn | NIDN0002057606 | |
dc.identifier.nidn | NIDN0027029201 | |
dc.identifier.nidn | NIDN0031079201 | |
dc.identifier.nidn | NIDN0001016827 |
Files in this item
This item appears in the following Collection(s)
-
LSP-Jurnal Ilmiah Dosen [7300]
Koleksi Jurnal Ilmiah Dosen