dc.contributor.author | KRISTIANA, Arika Indah | |
dc.contributor.author | UTOYO, Muhammad Imam | |
dc.contributor.author | DAFIK, Dafik | |
dc.contributor.author | AGUSTIN, Ika Hesti | |
dc.contributor.author | ALFARISI, Ridho | |
dc.date.accessioned | 2020-06-25T02:47:39Z | |
dc.date.available | 2020-06-25T02:47:39Z | |
dc.date.issued | 2019-04-09 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/99355 | |
dc.description.abstract | Let G = (V; E) be a connected graph. A bijection function f : E(G) !
f1; 2; 3; ; E(G)jg is called a local antimagic labeling if for all uv 2 E(G)s, w(u)
6= w(v),
where w(u) = e2E(u)f(e). Such that, local antimagic labeling induces a proper vertex kcoloring
of graph G that the neighbors of any vertex u receive at least minfr; d(v)g di erent
colors. The local antimagic r-dynamic chromatic number, denoted by
la
r (G) is the minimum k
such that graph G has the local antimagic r-dynamic vertex k-coloring. In this paper, we will
present the basic results namely the upper bound of the local antimagic r-dynamic chromatic
number of some classes graph. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOP Conf. Series: Earth and Environmental Science 243 (2019) 012077 | en_US |
dc.subject | Local antimagic | en_US |
dc.subject | r-dynamic | en_US |
dc.subject | coloring of graphs | en_US |
dc.title | Local Antimagic r-dynamic Coloring of Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.kodeprodi | KODEPRODI0210101#Pendidikan Matematika | |
dc.identifier.nidn | NIDN0007119401 | |
dc.identifier.nidn | NIDN0002057606 | |
dc.identifier.nidn | NIDN0001016827 | |
dc.identifier.nidn | NIDN0001088401 | |