• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulation of Electron Diffusion Coefficient Interpretation on the Optimum Thickness of TiO2 Photoanode in Dye-Sensitized Solar Cell (DSSC)

    Thumbnail
    View/Open
    F. MIPA_Jurnal_Edy Supriyanto_Simulation of Electron Diffusion Coefficient Interpretation.pdf (710.5Kb)
    Date
    2019-03-11
    Author
    Supriyanto, Edy
    Alviati, Nova
    Kartikasari, Henry Ayu
    Rohman, Lutfi
    Triyana, Kuwat
    Metadata
    Show full item record
    Abstract
    DSSC is a natural dye-based organic solar cell composed of layers of semiconductor (photoanode), dye, electrolyte, and the counter electrode. The photoanode layer on DSSC acts as a dye binder and can pass on excited electrons to the electrode counter. This component is one of the keys to improve the DSSC performance. The TiO2 material has been used widely as a photoanode due to its high stability to light so that at its optimum thickness it can pass well the sunlight energy on the surface of the DSSC. When the sunlight energy impinges to DSSC for relatively long time, it can increase the working temperature. Theoretically, the increase in the working temperature of the DSSC causes an increase in the electron diffusion coefficient in the DSSC, thus affecting its performance. Therefore, the interpretation of an increase in the electron diffusion coefficient due to an increase in the thickness and working temperature in DSSC is essential to be studied. In this article, a simulation of the determination of the optimum thickness of TiO2 photoanode was carried out. We studied the effect of electron diffusion coefficient on the DSSC open voltage at the optimum thickness. The highest electron diffusion coefficient in this simulation was 9.65x10 , voltage of 0.3411 V, power of 0.0020 V·A/cm -3 2 cm /s with current density of 0.0145 A/cm 2 , and efficiency of 2.000%. We found that the higher the electron diffusion coefficient, the open voltage of DSSC increased so that its performance also increased.
    URI
    http://repository.unej.ac.id/handle/123456789/96961
    Collections
    • LSP-Jurnal Ilmiah Dosen [7377]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository