dc.contributor.author | Prihandini, Rafiantika Megahnia | |
dc.contributor.author | Agustin, Ika Hesti | |
dc.contributor.author | Dafik, Dafik | |
dc.date.accessioned | 2018-07-04T06:40:21Z | |
dc.date.available | 2018-07-04T06:40:21Z | |
dc.date.issued | 2018-07-04 | |
dc.identifier.issn | 1742-6588 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/86175 | |
dc.description | IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) | en_US |
dc.description.abstract | In this paper we use simple and non trivial graph. If there exist a
bijective function g : V (G) [ E(G) ! f1; 2; : : : ; jV (G)j + jE(G)jg, such that for all
subgraphs P
2
B H of G isomorphic to H, then graph G is called an (a; d)-P
B Hantimagic
total graph. Furthermore, we can consider the total P
B H-weights
W(P
2
B H) =
P
v2V (P
2
BH)
f(v) +
P
f(e) which should form an arithmetic
sequence fa; a + d; a + 2d; :::; a + (n ¡ 1)dg, where a and d are positive integers and
e2E(P
2
BH)
n is the number of all subgraphs isomorphic to H. Our paper describes the existence
of super (a; d)-P
B H antimagic total labeling for graph operation of comb product
namely of G = L B H, where L is a (b; d
2
¤
)-edge antimagic vertex labeling graph and
H is a connected graph. | en_US |
dc.language.iso | en | en_US |
dc.subject | he Construction of P2⊳H- antimagic graph | en_US |
dc.subject | smaller edge | en_US |
dc.subject | antimagic vertex labeling | en_US |
dc.title | The Construction of P2⊳H- antimagic graph using smaller edge - antimagic vertex labeling | en_US |
dc.type | Article | en_US |