Show simple item record

dc.contributor.authorAgustin, Ika Hesti
dc.contributor.authorDafik, Dafik
dc.contributor.authorLatifah, Siti
dc.contributor.authorPrihandini, Rafiantika Megahnia
dc.date.accessioned2018-02-28T02:05:08Z
dc.date.available2018-02-28T02:05:08Z
dc.date.issued2018-02-28
dc.identifier.issn2086-0382
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/84417
dc.descriptionCAUCHY – JURNAL MATEMATIKA MURNI DAN APLIKASI Volume 4 (4) (2017), Pages 146-154en_US
dc.description.abstractWe assume finite, simple and undirected graphs in this study. Let G, H be two graphs. By an (a,d)-H- antimagic total graph, we mean any obtained bijective function 𝑓 ∶ 𝑉 ( 𝐺 ) ∪ 𝐸 ( 𝐺 ) → {1, 2, 3, … , | 𝑉 ( 𝐺 )| + | 𝐸 ( 𝐺 )| } such that for each subgraph H’ which is isomorphic to H, their total H-weights 𝑤(𝐻) = ∑ 𝑓(𝑣) 𝑣∈𝐸 ( 𝐻 ′ ) + ∑ 𝑓(𝑒) show an arithmetic sequence {𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, … . , 𝑎 + (𝑚 − 1)𝑑} where a, d > 0 are integers and m is the cardinality of all subgraphs H’ isomorphic to H. An (a, d)-H-antimagic total 𝑣∈𝐸 ( 𝐻 ′ ) labeling f is called super if the smallest labels are assigned in the vertices. In this paper, we will study a super (a, d)-B m -antimagicness of a connected and disconnected generalized amalgamation of fan graphs in which a path is a terminal.en_US
dc.language.isoenen_US
dc.subjectSuper (a, d)-B m -antimagic total coveringen_US
dc.subjectgeneralized amalgamation of fan graphsen_US
dc.subjectconnected and disconnecteden_US
dc.titleA Super (A,D)-Bm-Antimagic Total Covering Of Ageneralized Amalgamation Of Fan Graphsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record