• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Online Statistical Modeling (Regression Analysis) for Independent Responses

    Thumbnail
    View/Open
    F. MIPA_Jurnal_Dian A_Online Statistical Modeling.pdf (1.156Mb)
    Date
    2018-02-07
    Author
    Tirta, I Made
    Anggraeni, Dian
    Pandutama, Martinus
    Metadata
    Show full item record
    Abstract
    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.
    URI
    http://repository.unej.ac.id/handle/123456789/84159
    Collections
    • LSP-Jurnal Ilmiah Dosen [7410]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository