Show simple item record

dc.contributor.authorRinurwati, Rinurwati
dc.contributor.authorSuprajitno, Herry
dc.contributor.authorSlamin, Slamin
dc.date.accessioned2017-12-04T03:07:47Z
dc.date.available2017-12-04T03:07:47Z
dc.date.issued2017-12-04
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/83540
dc.descriptionAIP Conf. Proc. 1867, 020065-1–020065-6en_US
dc.description.abstractLet G =(V(G),E(G)) be any connected graph of order n = |V(G)| and measure m = |E(G)|. For an order set of vertices S = { s 1 , s 2 , ..., s k } and a vertex v in G, the adjacency representation of v with respect to S is the ordered k- tuple r A (v|S) = (d A (v, s 1 ), d A (v, s 2 ), ..., d A (v, s k )), where d A (u,v) represents the adjacency distance between the vertices u and v. The set S is called a local adjacency resolving set of G if for every two distinct vertices u and v in G, u adjacent v then r A (u|S) ≠ r A (v|S) . A minimum local adjacency resolving set for G is a local adjacency metric basis of G. Local adjacency metric dimension for G, dim A,l (G), is the cardinality of vertices in a local adjacency metric basis for G.en_US
dc.language.isoenen_US
dc.subjectLocal Adjacency Metric Dimensionen_US
dc.subjectSome Wheel Related Graphsen_US
dc.subjectPendant Pointsen_US
dc.titleOn Local Adjacency Metric Dimension of Some Wheel Related Graphs with Pendant Pointsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record