• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Conference Proceeding
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Conference Proceeding
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A robust myoelectric pattern recognition using online sequential extreme learning machine for finger movement classification

    Thumbnail
    View/Open
    F. T_Prosiding_Khairul Anam_A Robust myoelectric.pdf (408.5Kb)
    Date
    2017-08-29
    Author
    Anam, Khairul
    Al-Jumaily, Adel
    Metadata
    Show full item record
    Abstract
    A robust myoelectric pattern-recognition-system requires a system that should work in the real application as good as in the laboratory. However, this demand should be handled properly and rigorously to achieve a robust myoelectric system. Electrode shift is an issue that usually emerges when dealing with robustness issue. In daily life, the placement of electrodes becomes a significant issue that can downgrade the performance of the system. This paper proposed a new way to overcome the robustness issue by conducting an update to the system to anticipate changes in the future such as electrode shift, improvement in muscle strength or any other issue. Such update will be used to generate an adaptation. The adaptation is done according to the user's need by employing an online sequential extreme learning (OS-ELM) to learn the training data chunk by chunk. OS-ELM enables the myoelectric system to learn from a small number of data to avoid cumbersome training process. The day-to-day experiment shows that the proposed system can maintain its performance on average accuracy around 85% whereas the non-adaptive system could not.
    URI
    http://repository.unej.ac.id/handle/123456789/81554
    Collections
    • LSP-Conference Proceeding [1877]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository