Show simple item record

dc.contributor.authorW. Novitasari, Dafik, Slamin
dc.date.accessioned2016-01-28T08:57:41Z
dc.date.available2016-01-28T08:57:41Z
dc.date.issued2016-01-28
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/72906
dc.description.abstractGraph $G$ is a simple, finite and undirected graph. A graph $G$ is called to be an $(a,d)-H$-antimagic total covering if there is a bijective fuction $\lambda: V(G) \cup E(G) \rightarrow \{1, 2,\dots ,|V (G)| + |E(G)|\}$, such that for all subgraph $H'$ of $G$ isomorphic to $H$, where $\sum H'=\sum_{v \in V(H')}\lambda(v)+\sum_{e \in E(H')} \lambda(e)$ form an arithmetic sequence $\{a, a + d, a +2d,...,a+(s - 1)d\}$, where $a$ and $d$ are positive integers and $s$ is the number of all subgraphs $H'$ isomorphic to $H$. Graph $G$ will be called as $H$-antimagic super graph if $\{\lambda(v)\}{v \epsilon V}$ = $\{1, \ldots, \mid V \mid \}$. In this paper we will study about the existence of super $(a,d)-H$-antimagic total covering on shackle of cycle with cords denoted by $Shack$ $(C_6^3,e,n)$.en_US
dc.description.sponsorshipCGANT UNEJen_US
dc.language.isoiden_US
dc.subjectSuper H-antimagic total, shackle of cycle with cordsen_US
dc.titleSuper (a,d)-H- Antimagic Total Coveringf on Shackle of Cycle with Cordsen_US
dc.typeWorking Paperen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • MIPA [81]
    Abstract artikel jurnal yang dihasilkan oleh staf Unej (fulltext bagi yg open access)

Show simple item record