Show simple item record

dc.contributor.authorILMI, Shohibun Najam
dc.date.accessioned2025-02-20T01:17:55Z
dc.date.available2025-02-20T01:17:55Z
dc.date.issued2023-07-26
dc.identifier.nim192410103063en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/125448
dc.descriptionFinalisasi oleh Taufik Tgl 20 Pebruari 2025en_US
dc.description.abstractIn software development, the most important thing to consider in order to improve software quality is to ensure that there are no defects. Improving quality and minimizing software lifecycle costs has become a Software Engineering (SE) practitioner and researcher. Time and costs can be saved if defects are detected at an early stage of development. One concept to deal with such problems is Software Defect Prediction (SDP). Techniques that are often used in doing SDP are Machine Learning and Deep Learning. Naïve Bayes, Random Forest, and Decision Tree are some of the popular machine learning algorithms for SDP. Defect prediction using these three algorithms uses three datasets namely PC1, KC1, and KC2 and with split datasets 70 30, 80 20, and 90 10. As a result of this study, the random forest algorithm produced the highest accuracy on the PC1 dataset with a split dataset of 90 and 10 of 92%.en_US
dc.description.sponsorshipProf. Dr. Saiful Bukhori, ST., MKom Windi Eka Yulia Retnani, S.Kom.,MTen_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectSOFTWARE DEFECT PREDICTIONen_US
dc.subjectMACHINE LEARNINGen_US
dc.subjectNAIVE BAYESen_US
dc.subjectRANDOM FORESTen_US
dc.subjectDECISION TREEen_US
dc.titleKlasifikasi Software Defect Prediction Dengan Menggunakan Teknik Machine Learningen_US
dc.typeThesisen_US
dc.identifier.prodiInformatikaen_US
dc.identifier.pembimbing1Prof. Dr. Saiful Bukhori, ST., MKomen_US
dc.identifier.pembimbing2Windi Eka Yulia Retnani, S.Kom.,MTen_US
dc.identifier.validatorvalidasi_repo_ratna_Februari 2025en_US
dc.identifier.finalizationTaufiken_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record