Show simple item record

dc.contributor.authorOKTAVIANI, Linda
dc.date.accessioned2024-05-13T22:04:58Z
dc.date.available2024-05-13T22:04:58Z
dc.date.issued2023-07-04
dc.identifier.nim182410103003en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/120512
dc.descriptionFinalisasi unggah file repositori tanggal 13 Mei 2024_Kurnadien_US
dc.description.abstractThe skin is the body's outermost organ that plays an important role in protecting internal organs from damage and attack by disease-causing pathogens such as bacteria, microbes and viruses. Skin diseases have many types, forms and causes, from non-contagious to contagious and even chronic. Convolutional Neural Networks (CNN) is needed as a classification of an image to detect, because CNN has the ability to classify and get the most significant results in image recognition, which is intended for image data as a solution in the classification of facial skin diseases. In this study, facial skin diseases will be classified using the CNN method with two architectural models VGG19 and ResNet101 which are included in deep learning. Based on the research that has been done, to classify the image of skin diseases on the face using CNN with two architectural models VGG19 and ResNet101 obtained by adding a dropout layer with a value of 0.5 and the number of dense layers as many as 32 by using the RELU activation function and using several appropriate parameters based on the test scenario, namely with an input shape of 224 x 224 pixels, epochs 50, batch size 20, optimizer Adam, learning rate 0.001 and with data scenarios 80:10:10. The accuracy obtained from the two architectural models used is 93.33% for VGG19 and 76.32% for ResNet101.en_US
dc.description.sponsorship1. Dr. Dwiretno Istiyadi Swasono, S.T., M.Kom. 2. Muhamad Arief Hidayat, S.Kom., M.Komen_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectCNNen_US
dc.subjectVGG-19en_US
dc.subjectResNet-101en_US
dc.titleImplementasi Metode Convolutional Neural Networks untuk Klasifikasi Penyakit Kulit dengan Perbandingan Arsitektur VGG-19 dan ResNet-101en_US
dc.typeSkripsien_US
dc.identifier.prodiInformatikaen_US
dc.identifier.pembimbing1Dr. Dwiretno Istiyadi Swasono, S.T., M.Kom.en_US
dc.identifier.pembimbing2Muhamad Arief Hidayat, S.Kom., M.Kom.en_US
dc.identifier.validatorvalidasi_repo_ratna_Oktober_2023_20en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record