Show simple item record

dc.contributor.authorSALSABILA, Izdihar
dc.contributor.authorHADI, Alfian Futuhul
dc.contributor.authorTIRTA, I Made
dc.contributor.authorDEWI, Yuliani Setia
dc.contributor.authorUBAIDILLAH, Firdaus
dc.contributor.authorANGGRAENI, Dian
dc.date.accessioned2023-03-24T02:27:06Z
dc.date.available2023-03-24T02:27:06Z
dc.date.issued2022-02-08
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/113375
dc.description.abstractOne of the newest forecasting techniques today is the Statistical Downscaling (SDs) technique. The SDs technique is a procedure for inferring high-resolution information from low-resolution variables. Forecasting rainfall using the SDs technique is to build a function that can predict the value of a response variable using predictor variables, for example, the variables in the Global Circular Model (GCM). In this study, forecasting will be carried out using the Partial Least Square (PLS) model and compared with the PLS model that has been time segmented namely the REBUS-PLS model. We use four latent variables consisting of three exogenous latent variables and one endogenous latent variable. The exogenous variable ξ1 is precipitation, ξ2 is air pressure, and ξ3 is temperature, while the endogenous variable is monthly rainfall. The measurement model is a functional rule that describes the mathematical relationship between exogenous latent variables ξ1 , ξ2 , and ξ3 with their corresponding manifests. After obtaining the structural model and measurement model, then parameter estimation is carried out. The PLS model obtained was then tested for the goodness of the model with several indicators, namely R2 , mean redundancy, and Goodness of Fit. The values obtained are 70.05%, 49.098%, and 76.11%. There are 4 segmentations which are segment 1 (33 months), segment 2 (29 months), segment 3 (50 months), and segment 4 (32 months). The validity and reliability tests were carried out again in each segment. Furthermore, the goodness of the model is also tested on each local model. The R-square values generated in segment 1, segment 2, segment 3, and segment 4 are 97.13%, 97.52%, 85.05%, and 91.38%. Overall, the PLS model has a smaller RMSE than the REBUS-PLS model at 25 observation stations. Meanwhile, at the other 52 observation stations, the accuracy of the REBUS-PLS model is better than the PLS model.en_US
dc.language.isoenen_US
dc.publisherAtlantis Pressen_US
dc.subjectGeneral Circulation Model (GCM)en_US
dc.subjectStatistical Downscaling (SDs)en_US
dc.subjectPartial Least Square (PLS)en_US
dc.subjectResponse Based Unit Segmentation-Partial Least Square (REBUS-PLS)en_US
dc.titleStatistical Downscaling Technique Using Response Based Unit Segmentation-Partial Least Square (REBUS-PLS) for Monthly Rainfall Forecastingen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record