Show simple item record

dc.contributor.authorWIJAYA, Kristiana
dc.contributor.authorBASKORO, Edy Tri
dc.contributor.authorASSIYATUN, Hilda
dc.contributor.authorSUPRIJANTO, Djoko
dc.date.accessioned2023-02-22T07:49:20Z
dc.date.available2023-02-22T07:49:20Z
dc.date.issued2020-04-20
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/112326
dc.description.abstractFor any graphs 𝐹 ,𝐺, and 𝐻, the notation 𝐹 → (𝐺,𝐻) means that any red-blue coloring of all edges of 𝐹 will contain either a red copy of 𝐺 or a blue copy of 𝐻. The set (𝐺,𝐻) consists of all Ramsey (𝐺,𝐻)-minimal graphs, namely all graphs 𝐹 satisfying 𝐹 → (𝐺,𝐻) but for each 𝑒 ∈ 𝐸(𝐹), (𝐹 − 𝑒) ↛ (𝐺,𝐻). In this paper, we propose a simple construction for creating new Ramsey minimal graphs from the previous known Ramsey minimal graphs (by subdivision operation). In particular, suppose 𝐹 ∈ (𝑚𝐾2,𝑃4) and let 𝑒 ∈ 𝐸(𝐹) be an edge contained in a cycle of 𝐹, we construct a new Ramsey minimal graph in ((𝑚 + 1)𝐾2,𝑃4) from graph 𝐹 by subdividing the edge 𝑒 four times.en_US
dc.language.isoenen_US
dc.publisherHeliyonen_US
dc.subjectMathematicsen_US
dc.subjectRamsey minimal graphsen_US
dc.subjectRed-blue coloringen_US
dc.subjectMatchingen_US
dc.subjectPathen_US
dc.titleSubdivision of Graphs in R(mK2,P4)en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record