Show simple item record

dc.contributor.authorWIJAYA, Kristiana
dc.contributor.authorBASKORO, Edy Tri
dc.contributor.authorTAUFIK, Asep Iqbal
dc.contributor.authorSILABAN, Denny Riama
dc.date.accessioned2023-02-22T03:11:52Z
dc.date.available2023-02-22T03:11:52Z
dc.date.issued2022-02-08
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/112314
dc.description.abstractLet 𝐺, 𝐻, and 𝐹 be simple graphs. The notation 𝐹 ⟶ (𝐺, 𝐻) means that any red-blue coloring of all edges of 𝐹 contains a red copy of 𝐺 or a blue copy of 𝐻. The graph 𝐹 satisfying this property is called a Ramsey (𝐺, 𝐻)-graph. A Ramsey (𝐺, 𝐻)-graph is called minimal if for each edge 𝑒 ∈ 𝐸(𝐹), there exists a red-blue coloring of 𝐹 − 𝑒 such that 𝐹 − 𝑒 contains neither a red copy of 𝐺 nor a blue copy of 𝐻. In this paper, we construct some Ramsey (3𝐾2 , 𝑃5 )-minimal graphs by subdivision (5 times) of one cycle edge of a Ramsey (2𝐾2 , 𝑃5 )-minimal graph. Next, we also prove that for any integer 𝑚 ≥ 3, the set 𝑅(𝑚𝐾2 , 𝑃5) contains no connected graphs with circumference 3en_US
dc.language.isoenen_US
dc.publisherProceedings of the International Conference on Mathematics, Geometry, Statistics, and Computationen_US
dc.subjectRamsey minimal graphen_US
dc.subject3-matchingen_US
dc.subjectPathen_US
dc.titleOn Ramsey Minimal Graphs for a 3-Matching Versus a Path on Five Verticesen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record