Show simple item record

dc.contributor.authorBASKORO, Edy Tri
dc.contributor.authorWIJAYA, Kristiana
dc.contributor.authorRYAN, Joe
dc.date.accessioned2023-02-22T02:39:35Z
dc.date.available2023-02-22T02:39:35Z
dc.date.issued2022-02-01
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/112304
dc.description.abstractFor graphs F, G and H, we write F → (G, H) to mean that if the edges of F are colored with two colors, say red and blue, then the red subgraph contains a copy of G or the blue subgraph contains a copy of H. The graph F is called a Ramsey (G, H) graph if F → (G, H). Furthermore, the graph F is called a Ramsey (G, H)-minimal graph if F → (G, H) but F − e 6→ (G, H) for any edge e ∈ E(F). In this paper, we characterize all unicyclic Ramsey (G, H)-minimal graphs when G is a matching mK2 for any integer m ≥ 2 and H is a path on four vertices.en_US
dc.language.isoenen_US
dc.publisherThe Australasian Journal of Combinatoricsen_US
dc.subjectAll unicyclic Ramsey (mK2, P4)en_US
dc.titleAll unicyclic Ramsey (mK2, P4)-minimal graphsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record