Show simple item record

dc.contributor.authorSLAMIN, Slamin
dc.contributor.authorADIWIJAYA, Nelly Oktavia
dc.contributor.authorHASAN, Muhammad Ali
dc.contributor.authorDAFIK, Dafik
dc.contributor.authorWIJAYA, Kristiana
dc.date.accessioned2023-02-22T01:43:25Z
dc.date.available2023-02-22T01:43:25Z
dc.date.issued2020-11-07
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/112292
dc.description.abstractLet G = (V, E) be a graph with vertex set V and edge set E. A local antimagic total vertex coloring f of a graph G with vertex-set V and edge-set E is an injective map from V [ E to {1, 2, ... , |V| + |E|} such that if for each uv 2 E(G) then w(u) 6= w(v), where w(u) = Âuv2E(G) f(uv) + f(u). If the range set f satisfies f(V) = {1, 2, ... , |V|}, then the labeling is said to be local super antimagic total labeling. This labeling generates a proper vertex coloring of the graph G with the color w(v) assigning the vertex v. The local super antimagic total chromatic number of graph G, clsat(G) is defined as the least number of colors that are used for all colorings generated by the local super antimagic total labeling of G. In this paper we investigate the existence of the local super antimagic total chromatic number for some particular classes of graphs such as a tree, path, cycle, helm, wheel, gear, sun, and regular graphs as well as an amalgamation of stars and an amalgamation of wheelsen_US
dc.language.isoenen_US
dc.publisherSymmetryen_US
dc.subjectvertex coloringen_US
dc.subjectlocal super antimagic total labelingen_US
dc.subjectlocal super antimagic total chromatic numberen_US
dc.titleLocal Super Antimagic Total Labeling for Vertex Coloring of Graphsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record