Show simple item record

dc.contributor.authorNEGORO, Verdy Bangkit Yudho
dc.date.accessioned2023-01-04T07:00:52Z
dc.date.available2023-01-04T07:00:52Z
dc.date.issued2022-11-16
dc.identifier.nim17241010181en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/111382
dc.description.abstractThe rate of lung problems around the world continues to increase. According to WHO, different lung diseases including pneumonia, tuberculosis, and Covid-19 disease, the characteristics of these two diseases are almost the same [1]. The cause of death of people with lung disease during the Covid- 19 pandemic is due to the lengthy diagnosis process. Other factors, such as X-ray imaging results, often appear fuzzy and lack contracture, so an image seen by multiple observers can make different diagnoses. The study will classify lung images into four categories: normal lungs, tuberculosis, pneumonia, and Covid-19. The method chosen by the researcher is a Constitutive Neural Network using the VGG-16 architecture. The test results show that the Convolutional Neural Network (CNN) model gets the test results on the model having the highest accuracy in the scenario without using a pre-trained model by using a data comparison of 9:1 at epoch 50, with an accuracy of 94%, while the lowest result is in the scenario test data 8:2 epoch 50 at non-pre- trained model with an accuracy of 87%.en_US
dc.language.isootheren_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectConvolutional Neural Networken_US
dc.subjectTuberkulosisen_US
dc.subjectPneumoniaen_US
dc.subjectCovid-19en_US
dc.subjectVGG-16en_US
dc.titlePengembangan Aplikasi Menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16 untuk Identifikasi Penyakit Paruen_US
dc.typeSkripsien_US
dc.identifier.prodiSister Informasien_US
dc.identifier.pembimbing1Prof. Dr. Saiful Bukhori ST., M.Komen_US
dc.identifier.pembimbing2Januar Adi Putra S.Kom., M.Komen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record