Show simple item record

dc.contributor.authorKRISTIANA, Arika Indah
dc.contributor.authorDAFIK, Dafik
dc.contributor.authorALFARISI, Ridho
dc.contributor.authorANWAR, Umi Azizah
dc.contributor.authorCITRA, Sri Moeliyana
dc.date.accessioned2022-10-19T07:43:52Z
dc.date.available2022-10-19T07:43:52Z
dc.date.issued2020
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/110256
dc.description.abstractAll graph in this paper are connected and simple. Let G = (V, E) be a simple graph, where V (G) is vertex set and E(G) is edge set. The local irregularity vertex coloring of G is l : V (G) → {1, 2, · · · , k} and w : V (G) → N where w(u) = Σv∈N(u) l(v) such that opt(l) = min{max{li} and for every uv ∈ E(G), w(u) 6= w(v), w is a local irregularity vertex coloring. The minimum of color set is called the local irregular chromatic number, denoted by χlis(G). In this paper, we determine the local irregular chromatic number of graphs.en_US
dc.language.isoen_USen_US
dc.publisherAdvances in Mathematics: Scientific Journalen_US
dc.subjectinclusiveen_US
dc.subjectlocal irregularityen_US
dc.subjectchromatic numberen_US
dc.titleAn Inclusive Local Irregularity Coloring of Graphsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record