An Inclusive Local Irregularity Coloring of Graphs
dc.contributor.author | KRISTIANA, Arika Indah | |
dc.contributor.author | DAFIK, Dafik | |
dc.contributor.author | ALFARISI, Ridho | |
dc.contributor.author | ANWAR, Umi Azizah | |
dc.contributor.author | CITRA, Sri Moeliyana | |
dc.date.accessioned | 2022-10-19T07:43:52Z | |
dc.date.available | 2022-10-19T07:43:52Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://repository.unej.ac.id/xmlui/handle/123456789/110256 | |
dc.description.abstract | All graph in this paper are connected and simple. Let G = (V, E) be a simple graph, where V (G) is vertex set and E(G) is edge set. The local irregularity vertex coloring of G is l : V (G) → {1, 2, · · · , k} and w : V (G) → N where w(u) = Σv∈N(u) l(v) such that opt(l) = min{max{li} and for every uv ∈ E(G), w(u) 6= w(v), w is a local irregularity vertex coloring. The minimum of color set is called the local irregular chromatic number, denoted by χlis(G). In this paper, we determine the local irregular chromatic number of graphs. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Advances in Mathematics: Scientific Journal | en_US |
dc.subject | inclusive | en_US |
dc.subject | local irregularity | en_US |
dc.subject | chromatic number | en_US |
dc.title | An Inclusive Local Irregularity Coloring of Graphs | en_US |
dc.type | Article | en_US |
Files in this item
This item appears in the following Collection(s)
-
LSP-Jurnal Ilmiah Dosen [7301]
Koleksi Jurnal Ilmiah Dosen