• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cellular Communication Propagation at Drone around Building Environment with Single Knife Edge at 10 GHz

    Thumbnail
    View/Open
    F.TEKNIK_JURNAL_Andrita_Cellular Communication Propagation at Drone around Building Environment with Single Knife Edge at 10 GHz.pdf (1.660Mb)
    Date
    2021-02-03
    Author
    ESKA, Andrita Ceriana
    Metadata
    Show full item record
    Abstract
    The drone communication systems used a cellular network for controlling a drone from a long distance. That communication propagations between drone and base station were analyzed. The drone moved at the track around building environment. That environment used variations in building height. The communication propagation around building environment caused diffraction mechanism. Single knife edge method is used for that diffraction mechanism. The frequency of communication used 10 GHz. That frequency was influenced by atmospheric attenuation. This research was using some variations such as height of drone track location, transmitter power, and AMC (Adaptive Modulation Coding). MCS (Modulation Coding Scheme) was used AMC such as QPSK, 16 QAM, and 64 QAM. Some result was obtained at this research consist of LOS and NLOS distance, SNR, MCS probability, and percentage of drone coverage. NLOS propagation was caused by building height. The SNR value become increase when higher at drone position, such as drone was moving at 20 meters with height of flying drone 80 m and transmitter power 30 dBm obtained SNR 38.21 dBm. That SNR is affected AMC, so a higher SNR value increases AMC. The drone’s coverage 100%, with a height of flying drone 80 meters and transmitter power of 30 dBm. That condition showed more increasing coverage percentage than 64.8% for height of flying drone 20 meters and transmitter power 30 dBm. That result showed that more drone height increased of coverage percentage, probability modulation, and SNR value.
    URI
    http://repository.unej.ac.id//handle/123456789/105395
    Collections
    • LSP-Jurnal Ilmiah Dosen [7377]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository