dc.contributor.author | PRIHANDINI, Rafiantika Megahnia | |
dc.contributor.author | DAFIK, Dafik | |
dc.contributor.author | ADAWIYAH, Robiatul | |
dc.contributor.author | ALFARISI, Ridho | |
dc.contributor.author | AGUSTIN, Ika Hesti | |
dc.contributor.author | M VENKATACHALAM, M Venkatachalam | |
dc.date.accessioned | 2021-04-19T01:31:49Z | |
dc.date.available | 2021-04-19T01:31:49Z | |
dc.date.issued | 2020-12-01 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/104181 | |
dc.description.abstract | In this paper, we introduce a new notion of graph theory study, namely a local
edge metric dimension. It is a natural extension of metric dimension concept. dG(e, v) =
min{d(x, v), d(y, v)} is the distance between the vertex v and the edge xy in graph G. A non
empty set S ⊂ V is an edge metric generator for G if for any two edges e1, e2 ∈ E there is a vertex
k ∈ S such that dG(k, e1 6= dG(k, e2)). The minimum cardinality of edge metric generator for G
is called as edge metric dimension of G, denoted by dimE(G). The local edge metric dimension
of G, denoted by dimlE(G), is a local edge metric generator of G if r(xk|S) 6= r(yk|S) for every
pair xk, ky of adjacent edges of G. Our concern in this paper is investigating some results of
local edge metric dimension on some graphs | en_US |
dc.language.iso | en | en_US |
dc.publisher | Journal of Physics: Conference Series | en_US |
dc.subject | The local edge metric dimension of graph | en_US |
dc.title | Elegant Labeling Of Some Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.kodeprodi | KODEPRODI0210191#Pendidikan Matematika | |
dc.identifier.nidn | NIDN0005108905 | |
dc.identifier.nidn | NIDN0001016827 | |
dc.identifier.nidn | NIDN0031079201 | |
dc.identifier.nidn | NIDN0007119401 | |
dc.identifier.nidn | NIDN0001088401 | |