Show simple item record

dc.contributor.authorAgustin, Ika Hesti
dc.contributor.authorHasan, Mohammad
dc.contributor.authorDafik, Dafik
dc.contributor.authorAlfarisi, Ridho
dc.contributor.authorKristiana, Arika Indah
dc.contributor.authorPrihandini, Rafiantika Megahnia
dc.date.accessioned2018-07-03T04:00:12Z
dc.date.available2018-07-03T04:00:12Z
dc.date.issued2018-07-03
dc.identifier.issn1742-6596
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/86122
dc.descriptionIOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012038en_US
dc.description.abstractAll graph in this paper are ¯nite, simple and connected graph. Let G(V; E) be a graph of vertex set V and edge set E. A bijection f : V (G) ¡! f1; 2; 3; :::; jV (G)jg is called a local edge antimagic labeling if for any two adjacent edges e 1 and e 2 , w(e 1 ) 6 = w(e ), where for e = uv 2 G, w(e) = f(u) + f(v). Thus, any local edge antimagic labeling induces a proper edge coloring of G if each edge e is assigned the color w(e). The local edge antimagic hromatic number ° 2 (G) is the minimum number of colors taken over all colorings induced by local edge antimagic labelings of G. In this paper, we have found the lower bound of the local edge antimagic coloring of G . H and determine exact value local edge antimagic coloring of G . H.en_US
dc.language.isoenen_US
dc.subjectAntimagic labelingen_US
dc.subjectLocal antimagic edge coloringen_US
dc.subjectLocal antimagic edge chromatic numberen_US
dc.subjectcomb producten_US
dc.titleLocal Edge Antimagic Coloring of Comb Product of Graphsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record