dc.contributor.author | Agustin, Ika Hesti | |
dc.contributor.author | Hasan, Mohammad | |
dc.contributor.author | Dafik, Dafik | |
dc.contributor.author | Alfarisi, Ridho | |
dc.contributor.author | Kristiana, Arika Indah | |
dc.contributor.author | Prihandini, Rafiantika Megahnia | |
dc.date.accessioned | 2018-07-03T04:00:12Z | |
dc.date.available | 2018-07-03T04:00:12Z | |
dc.date.issued | 2018-07-03 | |
dc.identifier.issn | 1742-6596 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/86122 | |
dc.description | IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012038 | en_US |
dc.description.abstract | All graph in this paper are ¯nite, simple and connected graph. Let
G(V; E) be a graph of vertex set V and edge set E. A bijection f : V (G) ¡!
f1; 2; 3; :::; jV (G)jg is called a local edge antimagic labeling if for any two adjacent
edges e
1
and e
2
, w(e
1
) 6 = w(e
), where for e = uv 2 G, w(e) = f(u) + f(v). Thus,
any local edge antimagic labeling induces a proper edge coloring of G if each edge e
is assigned the color w(e). The local edge antimagic hromatic number °
2
(G) is the
minimum number of colors taken over all colorings induced by local edge antimagic
labelings of G. In this paper, we have found the lower bound of the local edge antimagic
coloring of G . H and determine exact value local edge antimagic coloring of G . H. | en_US |
dc.language.iso | en | en_US |
dc.subject | Antimagic labeling | en_US |
dc.subject | Local antimagic edge coloring | en_US |
dc.subject | Local antimagic edge chromatic number | en_US |
dc.subject | comb product | en_US |
dc.title | Local Edge Antimagic Coloring of Comb Product of Graphs | en_US |
dc.type | Article | en_US |