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Abstract. All graph in this paper are finite, simple and connected graph. Let
G(V, E) be a graph of vertex set V and edge set E. A bijection f : V (G) −→
{1, 2, 3, ..., |V (G)|} is called a local edge antimagic labeling if for any two adjacent
edges e1 and e2, w(e1) 6= w(e2), where for e = uv ∈ G, w(e) = f(u) + f(v). Thus,
any local edge antimagic labeling induces a proper edge coloring of G if each edge e
is assigned the color w(e). The local edge antimagic hromatic number γlea(G) is the
minimum number of colors taken over all colorings induced by local edge antimagic
labelings of G. In this paper, we have found the lower bound of the local edge antimagic
coloring of G . H and determine exact value local edge antimagic coloring of G . H.

Keywords: Antimagic labeling, Local antimagic edge coloring, Local antimagic edge
chromatic number, comb product.

1. Introduction
All graphs in this paper are finite, simple and connected graph, for detail definition of

graph see [1, 2]. A bijection mapping that assigns natural number to vertices of a graph
is called a graph labeling. In this type of labeling, we consider all weights associated
with each edge. If all the edge weights have the different value then we call the labeling
as an antimagic.

Hartsfield and Ringel [3] introduced the concept of antimagic labeling of a graph.
A bijection f : V (G) −→ {1, 2, 3, ..., |V (G)|} is called a local edge antimagic labeling
if for any two adjacent edges e1 and e2, w(e1) 6= w(e2), where for e = uv ∈ G,
w(e) = f(u) + f(v). Thus, any local edge antimagic labeling induces a proper edge
coloring of G if each edge e is assigned the color w(e). The local edge antimagic chromatic
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number γlea(G) is the minimum number of colors taken over all colorings induced by
local edge antimagic labelings of G.

There are some results related to local antimagic coloring. Arumugam et al. [4]
firstly introduced a new notion of local antimagic vertex coloring of a graph G. They
give an lower bound and upper bound of local antimagic vertex coloring of joint graph
and also give the exact value of local antimagic vertex coloring for path, cycle, complete
graph, friendship, wheel, bipartite and complete bipartite. Furthermore, we get the
relation between local edge antimagic edge chromatic number and local antimagic vertex
chromatic number studied in [4] . In their paper also showed the following observation.

Observation 1.1. [4] For any graph G, χlea(G) ≥ χ(G), where χ(G) is a chromatic
number of vertex coloring of G.

Dafik, et. al. [5, 6] determined Super edge-antimagic total labelings of mKn,n and
Super edge-antimagicness for a class of disconnected graphs, respectively. The research
related to the coloring of a graph who has researched by ika, et.al [8] about On r-dynamic
coloring of some graph operations. Marr et, al [11] stated the magic rectangles are a
generalization of magic squares. Let local antimagic labeling with γlae(G) = 2 be the
same as bimagic labeling. For more details on bimagic labelings we refer to Marr et. al.
[10].

Agustin et. al. [9] studied a different type of local antimagic coloring, namely local
edge antimagic coloring. Their research studied the existence of local edge antimagic
coloring of some special graphs and also analyse the lower bound of its local edge
antimagic chromatic number. On this research, they have found the local edge antimagic
chromatic number of path graph Pn, cycle graph Cn, friendship graph Fn, ladder graph
Ln, star graph Sn, wheel graph Wn, complete graph Kn, prism graph Prn and the graphs
Cn¯mK1 and G¯mK1. They also give a lower bound of local edge antimagic chromatic
number its γlea ≥ ∆(G). The chromatic number of local edge antimagic for path graph
Pn, cycle graph Cn, friendship graph Fn, ladder graph Ln, star graph Sn, wheel graph
Wn, complete graph Kn, prism graph Prn by the following: γlea(Pn) = 2, γlea(Cn) = 3,
γlea(Fn) = 2n + 1, γlea(Ln) = 3, γlea(Sn) = n, γlea(Wn) = n + 2, γlea(Kn) = 2n− 3, and
γlea(Prn) = 5.

In this paper, we investigate the local edge antimagic coloring of comb product graphs
can be found in [7], [12]. Let G and H be two connected graphs. Let o be a vertex of
H. The comb product between G and H, denoted by G . H, is a graph obtained by
taking one copy of G and |V (G)| copies of H and grafting the i-th copy of H at the
vertex o to the i-th vertex of G. By the definition of comb product, we can say that
V (G . H) = {(a, u)|a ∈ V (G), u ∈ V (H)} and (a, u)(b, v) ∈ E(G . H) whenever a = b
and uv ∈ E(H), or ab ∈ E(G) and u = v = o.

2. Main Results
In this paper, we have studied the existence of local edge antimagic coloring of comb

product of graphs. We have found the local edge antimagic chromatic number of path
comb path, path comb cycle, cycle and path, cycle and cycle, path and star, cycle and
star. We also analyse the lower bound of its local edge antimagic coloring of G . H.
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Theorem 2.1. Let G and H be a connected graph, the local edge antimagic chromatic
number of G . H is γlae(G . H) ≥ γlea(G) + γlea(H).

Proof.The comb product between G and H is a graph obtained by one copy of G and
| V (G) | copies of H, and grafting the i vertex of G to the ui in i-th copy of H. Suppose
G admits a local edge antimagic coloring with γlae(G). Furthermore, the subgraph Hi

admits a local edge antimagic coloring with γlae(Hi). By claiming that edge weight in G
and Hi are distict and edge weight in every subgraph Hi induces a local edge antimagic
of H so that γlea(H1) = γlea(H2) = · · · = γlea(Hn) = γlea(H). Thus, we obtain that a
local antimagic labeling of G . H.

γlea(G . H) ≥ |wG(e), e ∈ V (G)|+ |wHi(e), e ∈ V (Hi)|
= γlea(G) + γlea(Hi)
= γlea(G) + γlea(H)

Hence, from the above edge weight it is easy to see that the lower bound local
antimagic labeling of G . H is γlea(G . H) ≥ γlea(G) + γlea(H). ut
Theorem 2.2. For n,m ≥ 3, the local edge antimagic chromatic number of Pn . Pm

with grafting pendant vertex x ∈ V (Pm) is γlea(Pn . Pm) = 4

Proof. The graph Pn .Pm is a connected graph with vertex set V (Pn .Pm) = {xi,j : 1 ≤
i ≤ n, 1 ≤ j ≤ m} and edge set E(Pn.Pm) = {xi,1xi+1,1 : 1 ≤ i ≤ n−1}∪{xi,jxi,j+1; 1 ≤
i ≤ n, 1 ≤ j ≤ m− 1}. Hence |V (Pn . Pm)| = mn and |E(Pn . Pm)| = mn− 1. Define a
bijection f : V (Pn . Pm) −→ {1, 2, 3, ..., |V (Pn . Pm)|} by the following

f(xi,j) =





1−n+i+nj
2 , if i ≡ 1(mod 2) and j ≡ 1(mod 2)

n+2+nj−i
2 , if i ≡ 0(mod 2) and j ≡ 1(mod 2)

n(m + 1) + 1−i−nj
2 , if i ≡ 1(mod 2) and j ≡ 0(mod 2)

mn + i−nj
2 , if i ≡ 0(mod 2) and j ≡ 0(mod 2)

And the edge weight are as follows

w(xi,1xi+1,1) =
{

n + 2 i ≡ 0(mod 2);
n + 1 i ≡ 1(mod 2);

w(xi,jxi,j+1) =
{

nm + n + 1 j ≡ 0(mod 2);
nm + 1 j ≡ 1(mod 2);

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of Pn . Pm and it gives γlea(Pn . Pm) ≤ 4. Based on Theorem 2.1, the lower
bound is γlea(Pn . Pm) ≥ γlea(Pn) + γlea(Pm) = 4. It concludes that γlea(Pn . Pm) = 4.
ut

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


4

1234567890 ‘’“”

ICCGANT IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012038  doi :10.1088/1742-6596/1008/1/012038

1

26

21

2

12

18

3

21 21 21 21

26 26 26 26

21 21 21 21

10

20

6

15 11

7

19

14

17

4

13

9 8

21
5

16

Figure 1. Example of Local antimagic edge coloring of P5 . P4

Theorem 2.3. For n ≥ 3 and m be even positive integers, the local edge antimagic
chromatic number of Pn . Cm is γlea(Pn . Cm) = 5

Proof. The graph Pn . Cm is a connected graph with vertex set V (Pn . Cm) =
{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set E(Pn . Cm) = {xi,1xi+1,1 : 1 ≤ i ≤
n − 1} ∪ {xi,jxi,j+1, xi,mxi,1; 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1}. Hence |V (Pn . Cm)| = mn
and |E(Pn . Cm)| = mn + n − 1. For n ≥ 3. Define a bijection f : V (Pn . Cm) −→
{1, 2, 3, ..., |V (Pn . Cm)|} by the following

f(xi,j) =





1−n+i+nj
2 , if i ≡ 1(mod 2) and j ≡ 1(mod 2)

n+2+nj−i
2 , if i ≡ 0(mod 2) and j ≡ 1(mod 2)

n(m + 1) + 1−i−nj
2 , if i ≡ 1(mod 2) and j ≡ 0(mod 2)

mn + i−nj
2 , if i ≡ 0(mod 2) and j ≡ 0(mod 2)

And the edge weight are as follows

w(xi,1xi+1,1) =
{

n + 2 i ≡ 0(mod 2);
n + 1 i ≡ 1(mod 2);

w(xi,jxi,j+1) =
{

nm + n + 1 j ≡ 0(mod 2);
nm + 1 j ≡ 1(mod 2);

w(xi,1xi,m) =
mn

2
+ n + 1

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of Pn . Cm and it gives γlea(Pn . Cm) ≤ 5. Based on Theorem 2.1, the lower
bound is γlea(Pn . Cm) ≥ γlea(Pn) + γlea(Cm) = 5. It concludes that γlea(Pn . Cm) = 5.
ut
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Figure 2. Example of Local antimagic edge coloring of P5 . C4

Theorem 2.4. For n,m ≥ 3, the local edge antimagic chromatic number of Cn . Pm

with grafting pendant vertex x ∈ V (Pm) is γlea(Cn . Pm) = 5

Proof. The graph Cn.Pm is a connected graph with vertex set V (Cn.Pm) = {xi,j : 1 ≤
i ≤ n, 1 ≤ j ≤ m} and edge set E(Cn.Pm) = {xi,1xi+1,1 : 1 ≤ i ≤ n−1}∪{xi,jxi,j+1; 1 ≤
i ≤ n, 1 ≤ j ≤ m− 1} ∪ {xi,mxi,1}. Hence |V (Cn . Pm)| = mn and |E(Cn . Pm)| = mn.
For n,m ≥ 3. Define a bijection f : V (Cn . Pm) −→ {1, 2, 3, ..., |V (Cn . Pm)|} by the
following

f(xi,j) =





1−n+i+nj
2 , if i ≡ 1(mod 2) and j ≡ 1(mod 2)

n+2+nj−i
2 , if i ≡ 0(mod 2) and j ≡ 1(mod 2)

n(m + 1) + 1−i−nj
2 , if i ≡ 1(mod 2) and j ≡ 0(mod 2)

mn + i−nj
2 , if i ≡ 0(mod 2) and j ≡ 0(mod 2)

And the edge weight are as follows

w(xi,1xi+1,1) =
{

n + 2 i ≡ 0(mod 2);
n + 1 i ≡ 1(mod 2);

w(x1,1xn,1) =





n+4
2 if n is even;

n+3
2 if n is odd;

w(xi,jxi,j+1) =
{

nm + n + 1 j ≡ 0(mod 2);
nm + 1 j ≡ 1(mod 2);

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of Cn . Pm and it gives γlea(Cn . Pm) ≤ 5. Based on Theorem 2.1, the lower
bound is γlea(Cn . Pm) ≥ γlea(Cn) + γlea(Pm) = 5. It concludes that γlea(Cn . Pm) = 5.
ut
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Figure 3. Example of Local antimagic edge coloring of C6 . P4

Theorem 2.5. For n ≥ 3 and m be even positive integers, the local edge antimagic
chromatic number of Cn . Cm is γlea(Cn . Cm) = 6

Proof. The graph Cn.Cm is a connected graph with vertex set V (Cn.Cm) = {xi,j : 1 ≤
i ≤ n, 1 ≤ j ≤ m} and edge set E(Cn.Cm) = {xi,1xi+1,1 : 1 ≤ i ≤ n−1}∪{xi,jxi,j+1; 1 ≤
i ≤ n, 1 ≤ j ≤ m−1}∪{x1,1x1,n}∪{xi,1xi,m; 1 ≤ i ≤ n}. Hence |V (Cn .Cm)| = mn and
|E(Cn . Cm)| = mn + n. For n ≥ 3 and m be even positive integers. Define a bijection
f : V (Cn . Cm) −→ {1, 2, 3, ..., |V (Cn . Cm)|} by the following

f(xi,j) =





1−n+i+nj
2 , if i ≡ 1(mod 2) and j ≡ 1(mod 2)

n+2+nj−i
2 , if i ≡ 0(mod 2) and j ≡ 1(mod 2)

n(m + 1) + 1−i−nj
2 , if i ≡ 1(mod 2) and j ≡ 0(mod 2)

mn + i−nj
2 , if i ≡ 0(mod 2) and j ≡ 0(mod 2)

And the edge weight are as follows

w(xi,1xi+1,1) =
{

n + 2 i ≡ 0(mod 2);
n + 1 i ≡ 1(mod 2);
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w(x1,1xn,1) =





n+4
2 if n is even;

n+3
2 if n is odd;

w(xi,jxi,j+1) =
{

nm + n + 1 j ≡ 0(mod 2);
nm + 1 j ≡ 1(mod 2);

w(xi,1xi,m) =
mn

2
+ n + 1
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Figure 4. Example of Local antimagic edge coloring of C6 . C4

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of Cn . Cm and it gives γlea(Cn . Cm) ≤ 6. Based on Theorem 2.1, the lower
bound is γlea(Cn . Cm) ≥ γlea(Cn) + γlea(Cm) = 6. It concludes that γlea(Cn . Cm) = 6.
ut
Theorem 2.6. For n, m ≥ 3, the local edge antimagic chromatic number of Pn . Sm

with grafting central vertex x ∈ V (Sm) is γlea(Pn . Sm) = 2 + m

Proof. The graph Pn . Sm is a connected graph with vertex set V (Pn . Sm) = {xi : 1 ≤
i ≤ n} ∪ {xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set E(Pn . Sm) = {xi,1xi+1,1 : 1 ≤ i ≤
n−1}∪{xixi,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Hence |V (Pn .Sm)| = n+mn and |E(Pn .Sm)| =
n+mn−1. For n,m ≥ 3. Define a bijection f : V (Pn .Sm) −→ {1, 2, 3, ..., |V (Pn .Sm)|}
by the following
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f(xi) =





n + 1− i
2 , if i ≡ 0(mod 2)

i+1
2 , if i ≡ 1(mod 2)

f(xi,j) =





2nj+i
2 , if i ≡ 0(mod 2)

2nj+2n−i+3
2 , if i ≡ 1(mod 2)

And the edge weight are as follows

w(xixi+1) =
{

n + 2 i ≡ 0(mod 2);
n + 1 i ≡ 1(mod 2);

w(xixi,j) = nj + 1

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of Pn . Sm and it gives γlea(Pn . Sm) ≤ 2 + m. Based on Theorem 2.1,
the lower bound is γlea(Pn . Sm) ≥ γlea(Pn) + γlea(Sm) = 2 + m. It concludes that
γlea(Pn . Sm) = 2 + m. ut

8 12 16 5 9 13 7 11 15 6 10 14

1 4 2 35 56

9
13

17 9 9 9
13 13 13

17 1717

Figure 5. Example of Local antimagic edge coloring of P4 . S3

Theorem 2.7. For n, m ≥ 3, the local edge antimagic chromatic number of Cn . Sm

with grafting central vertex x ∈ V (Sm) is γlea(Cn . Sm) = 3 + m

Proof. The graph Cn . Sm is a connected graph with vertex set V (Cn . Sm) =
{xi : 1 ≤ i ≤ n} ∪ {xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set E(Cn . Sm) =
{xi,1xi+1,1 : 1 ≤ i ≤ n − 1} ∪ {x1xn} ∪ {xixi,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Hence
|V (Cn . Sm)| = n + mn and |E(Cn . Sm)| = n + mn. For n, m ≥ 3. Define a bijection
f : V (Cn . Sm) −→ {1, 2, 3, ..., |V (Cn . Sm)|} by the following

f(xi) =





n + 1− i
2 , if i ≡ 0(mod 2)

i+1
2 , if i ≡ 1(mod 2)

f(xi,j) =





2nj+i
2 , if i ≡ 0(mod 2)

2nj+2n−i+3
2 , if i ≡ 1(mod 2)

And the edge weight are as follows
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w(xixi+1) =
{

n + 2 i ≡ 0(mod 2);
n + 1 i ≡ 1(mod 2);

w(x1,1xn,1) =





n+4
2 if n is even;

n+3
2 if n is odd;

w(xixi,j) = nj + 1

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of Cn . Sm and it gives γlea(Cn . Sm) ≤ 3 + m. Based on Theorem 2.1,
the lower bound is γlea(Cn . Sm) ≥ γlea(Cn) + γlea(Sm) = 3 + m. It concludes that
γlea(Cn . Sm) = 3 + m. ut
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Figure 6. Example of Local antimagic edge coloring of C4 . S3

3. Conclusion
In this paper we have given an asymptotically tight result on local edge antimagic
coloring of comb product of special graphs, namely path, cycle, and star. We also
determine the lower bound of local edge antimagic coloring of comb product of any two
graphs. Hence the following problem aries naturally.

Open Problem 3.1. Determine exact value local edge antimagic coloring of comb
product for another family graphs?

Open Problem 3.2. Determine exact value local edge antimagic total coloring of comb
product Pn . Cm, if m is odd integer?
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