Show simple item record

dc.contributor.authorMarsidi, Marsidi
dc.contributor.authorDafik, Dafik
dc.contributor.authorAgustin, Ika Hesti
dc.contributor.authorAlfarisi, Ridho
dc.date.accessioned2018-02-28T03:53:12Z
dc.date.available2018-02-28T03:53:12Z
dc.date.issued2018-02-28
dc.identifier.issn2086-0382
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/84429
dc.descriptionCAUCHY – JURNAL MATEMATIKA MURNI DAN APLIKASI Volume 4(3) (2016), Pages 125-130en_US
dc.description.abstractLet G be a simple, nontrivial, and connected graph. 𝑊 = {𝑤 } is a representation of an ordered set of k distinct vertices in a nontrivial connected graph G. The metric code of a vertex v, where 𝑣 ∈ G, the ordered 𝑟(𝑣|𝑊) = (𝑑 ( 𝑣, 𝑤 1 ) , 𝑑 ( 𝑣, 𝑤 2 ) , . . . , 𝑑 ( 𝑣, 𝑤 𝑘 1 , 𝑤 2 , 𝑤 3 , … , 𝑤 𝑘 ) ) of k-vector is representations of v with respect to W, where 𝑑(𝑣, 𝑤 ) is the distance between the vertices v and w i for 1≤ i ≤k. Furthermore, the set W is called a local resolving set of G if 𝑟 ( 𝑢 | 𝑊 ) ≠ 𝑟(𝑣|𝑊) for every pair u,v of adjacent vertices of G. The local metric dimension ldim(G) is minimum cardinality of W. The local metric dimension exists for every nontrivial connected graph G. In this paper, we study the local metric dimension of line graph of special graphs , namely 𝑖 path, cycle, generalized star, and wheel. The line graph L(G) of a graph G has a vertex for each edge of G, and two vertices in L(G) are adjacent if and only if the corresponding edges in G have a vertex in common.en_US
dc.language.isoenen_US
dc.subjectmetric dimensionen_US
dc.subjectlocal metric dimension numberen_US
dc.subjectline graphen_US
dc.subjectresolving seten_US
dc.titleOn The Local Metric Dimension of Line Graph of Special Graphen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record