• Login
    View Item 
    •   Home
    • UNDERGRADUATE THESES (Koleksi Skripsi Sarjana)
    • UT-Faculty of Teacher Training and Education
    • View Item
    •   Home
    • UNDERGRADUATE THESES (Koleksi Skripsi Sarjana)
    • UT-Faculty of Teacher Training and Education
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    KONEKSI PELANGI KUAT PADA GRAF HASIL OPERASI COMB SISI DAN KAITANNYA DALAM MENUMBUHKAN KETERAMPILAN BERPIKIR TINGKAT TINGGI

    Thumbnail
    View/Open
    Yulianita Hastuti - 130210101020.pdf (949.5Kb)
    Date
    2017-08-10
    Author
    Hastuti, Yulianita
    Metadata
    Show full item record
    Abstract
    Teori Graf merupakan sebuah topik bahasan yang saat ini telah banyak dikembangkan. Berbagai situasi dapat dimodelkan dengan teori graf. Permasalahan yang cukup menarik dalam teori graf adalah koneksi pelangi. Misalkan G adalah graf terhubung nontrivial dengan edge ¡ coloring c : E(G) ! f1; 2; 3; :::; ng; n 2 N, dikatakan pewarnaan koneksi pelangi pada G jika untuk setiap pasang titik u dan v di sisi terdapat suatu lintasan dengan u dan v sebagai titik ujung yang setiap isinya memperoleh warna berbeda. Comb sisi graf tangga dengan graf lingkaran dide¯nisikan dengan mengambil satu salinan graf tangga dan salinan graf lingkaran sebanyak jumlah sisi graf tangga dan melekatkan satu sisi dari setiap salinan graf lingkaran ke setiap sisi pada graf tangga yang dinotasikan dengan (Lp D Cm). Graf ini merupakan graf yang memiliki dua expand pada indeks p, dan m. Dimana nilai p adalah banyaknya selubung pada bagian graf tangga, nilai m adalah banyaknya expand titik pada graf lingkaran. Tujuan dari penelitian ini adalah menentukan nilai koneksi pelangi dan koneksi pelangi kuat pada graf (Lp D Lr), (Lp D Cm), (Cn D Cm), dan (Cn D Lr) serta kaitannya dalam menumbuhkan keterampilan berpikir tingkat tinggi berdasarkan Taksonomi Bloom yang telah direvisi. Metode yang digunakan adalah Metode deduktif aksiomatik, yaitu penelitian yang menggunakan prinsip-prinsip pembuktian deduktif yang berlaku dalam logika matematika dengan menggunakan aksioma atau teorema tentang koneksi pelangi yang telah ada untuk memecahkan suatu masalah. Hal tersebut kemudian diterapkan pada graf (Lp D Lr), (Lp D Cm), (Cn D Cm), dan (Cn D Lr). Hasil penelitian ini berupa teorema baru mengenai koneksi pelangi dan koneksi pelangi kuat pada graf (Lp D Lr), (Lp D Cm), (Cn D Cm), dan (Cn D Lr) serta kaitannya dalam menumbuhkan keterampilan berpikir tingkat tinggi. Comb sisi dari graf tangga dengan graf tangga (Lp D Lr) dengan p ¸ 2 dan r ¸ 2 memiliki rc(Lp D Lr) = p + 2r + 1, dan src(Lp D Lr) = p + 2pr + 1. Comb sisi dari graf tangga dengan graf lingkaran (Lp D Cm) dengan p ¸ 2 dan m ¸ 4 memiliki rc(Lp D Cm) = p + m, dan src(Lp D Cm) = (m ¡ 1)(3p + 1) + p + 1. Comb sisi dari graf lingkaran dengan graf lingkaran (Cn DCm) dengan n ¸ 4 dan m ¸ 4 memiliki rc(CnDCm) = dn 2 e+m¡1, dan src(CnDCm) = dn 2 e+n(m¡1). Comb sisi dari graf lingkaran dengan graf tangga (Cn D Lr) dengan n ¸ 4 dan r ¸ 2 memiliki rc(Cn D Lp) = src(Cn D Lp) = dn 2 e + 2p). Kaitan antara keterampilan berpikir tingkat tinggi dengan koneksi pelangi dan koneksi pelangi kuat pada comb sisi graf tangga dengan graf lingkaran terbagi dalam 6 tahap. Tahap mengingat melipui mengingat kembali jenis graf yang akan digunakan yaitu graf yang tidak berarah, terhubung, dan graf yang berhingga. Tahap memahami meliputi memahami intruksi dan menegaskan pengertian/ makna ide atau konsep yang telah diajarkan. Pada tahap ini yang dilakukan adalah memahami tentang operasi graf comb sisi dan tentang kardinalitas dari graf hasil operasi comb sisi serta diameter. Tahap menerapkan yaitu mengaplikasikan konsep dalam situasi tertentu. Pada tahap ini yang dilakukan adalah menerapkan pewarnaan pelangi pada graf hasil operasi comb sisi. Tahap menganalisis meliputi kemampuan memisahkan konsep kedalam beberapa komponen dan menghubungkan satu sama lain untuk memperoleh pemahaman atas konsep tersebut secara utuh. Pada tahap ini yang dilakukan adalah menganalisis fungsi koneksi pelangi dan koneksi pelangi kuat. Tahap mengevaluasi yaitu merupakan kemampuan menetapkan derajat sesuatu berdasarkan norma, kriteria atau patokan tertentu. Pada tahap ini yang dilakukan adalah mengecek dan mengkaji ulang pewarnaan koneksi pelangi. Hal ini dimaksudkan untuk mengetahui apakah suatu graf G warna yang digunakan adalah yang paling minimal dan optimal sehingga mencapai batas bawah berdasarkan teorema. Tahap mencipta yaitu merupakan kemampuan memadukan unsur-unsur menjadi suatu bentuk yang utuh dan koheran, atau membuat sesuatu yang orisinil. Pada tahap ini yang dilakukan adalah menciptakan 4 teorema baru berdasarkan observasi sebelumnya.
    URI
    http://repository.unej.ac.id/handle/123456789/80965
    Collections
    • UT-Faculty of Teacher Training and Education [15435]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Context

    Edit this item

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository