Show simple item record

dc.contributor.authorPRIHANDINI, Rafiantika Megahnia
dc.contributor.authorDAFIK, Dafik
dc.contributor.authorADAWIYAH, Robiatul
dc.contributor.authorALFARISI, Ridho
dc.contributor.authorAGUSTIN, Ika Hesti
dc.contributor.authorM VENKATACHALAM, M Venkatachalam
dc.date.accessioned2021-04-19T01:31:49Z
dc.date.available2021-04-19T01:31:49Z
dc.date.issued2020-12-01
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/104181
dc.description.abstractIn this paper, we introduce a new notion of graph theory study, namely a local edge metric dimension. It is a natural extension of metric dimension concept. dG(e, v) = min{d(x, v), d(y, v)} is the distance between the vertex v and the edge xy in graph G. A non empty set S ⊂ V is an edge metric generator for G if for any two edges e1, e2 ∈ E there is a vertex k ∈ S such that dG(k, e1 6= dG(k, e2)). The minimum cardinality of edge metric generator for G is called as edge metric dimension of G, denoted by dimE(G). The local edge metric dimension of G, denoted by dimlE(G), is a local edge metric generator of G if r(xk|S) 6= r(yk|S) for every pair xk, ky of adjacent edges of G. Our concern in this paper is investigating some results of local edge metric dimension on some graphsen_US
dc.language.isoenen_US
dc.publisherJournal of Physics: Conference Seriesen_US
dc.subjectThe local edge metric dimension of graphen_US
dc.titleElegant Labeling Of Some Graphsen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI0210191#Pendidikan Matematika
dc.identifier.nidnNIDN0005108905
dc.identifier.nidnNIDN0001016827
dc.identifier.nidnNIDN0031079201
dc.identifier.nidnNIDN0007119401
dc.identifier.nidnNIDN0001088401


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record