PAPER • OPEN ACCESS

The local edge metric dimension of graph

To cite this article: R Adawiyah et al 2020 J. Phys.: Conf. Ser. 1543012009

View the article online for updates and enhancements.

IOP ebooks"'

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

The local edge metric dimension of graph

R Adawiyah ${ }^{1,2}$, Dafik 1,2, R Alfarisi ${ }^{1,4}$, R M Prihandini, ${ }^{1,2}$ I H Agustin ${ }^{1,3}$, M Venkatachalam ${ }^{5}$
${ }^{1}$ Combinatorics Graph Theory and Network Topology (CGANT) research group University of Jember Indonesia
${ }^{2}$ Mathematics Education Departement University of Jember, Indonesia
${ }^{3}$ Mathematics Departement, University of Jember, Indonesia
${ }^{4}$ Elementary School Education Departement, University of Jember, Indonesia
${ }^{5}$ Department of Mathematics, Kongunadu Arts and Science College, Tamil Nadu, India
E-mail: robiatul@unej.ac.id, d.dafik@unej.ac.id

Abstract

In this paper, we introduce a new notion of graph theory study, namely a local edge metric dimension. It is a natural extension of metric dimension concept. $d_{G}(e, v)=$ $\min \{d(x, v), d(y, v)\}$ is the distance between the vertex v and the edge $x y$ in graph G. A non empty set $S \subset V$ is an edge metric generator for G if for any two edges $e_{1}, e_{2} \in E$ there is a vertex $k \in S$ such that $d_{G}\left(k, e_{1} \neq d_{G}\left(k, e_{2}\right)\right)$. The minimum cardinality of edge metric generator for G is called as edge metric dimension of G, denoted by $\operatorname{dim}_{E}(G)$. The local edge metric dimension of G, denoted by $\operatorname{diml}_{E}(G)$, is a local edge metric generator of G if $r(x k \mid S) \neq r(y k \mid S)$ for every pair $x k, k y$ of adjacent edges of G. Our concern in this paper is investigating some results of local edge metric dimension on some graphs.

1. Introduction

The concept of Metric dimension was introduced in 1976. It raised from the concept of resolving set and minimum resolving set. The application of this study can be used in navigation system, chemistry, and optimization. In this regards, there has been some results carried out extensively in numerous types of metric dimension. The researchers have found and extend the types of metric dimension, such as partition dimension, star partition dimension, edge metric dimension, etc. In this Paper, we introduce a new notion of metric dimension which was introduced by Slater [12], Melter and Harrary [8, 9, 3], namely local edge metric dimension of graphs. We can see $[1,2,3,4,5,6,7]$ for further terminology and definition of graph. Let $d_{G}(e, v)=\min \{d(x, v), d(y, v)\}$ be a distance between the vertex v and the edge $x y$. A vertex $k \in V$ distinguishes two edges $e_{1} e_{2} \in E$ if $\left(d_{G}\left(k, e_{1}\right) \neq d_{G}\left(k, e_{2}\right)\right.$. A set S of vertices in G is an edge metric generator for G if every two edges of G have different representation respect to S. The edge metric dimension of G, denoted by $\operatorname{dim}_{E}(G)$, is the minimum cardinality of edge metric generator for G. Some research related to edge metric dimension can be identified in $[10,11]$. In this paper, we concern on local edge metric dimension of graph. In local edge metric dimension, the neighbourhood edges may not have the same representation. The local edge metric dimension of G, denoted by $\operatorname{diml}_{E}(G)$, is the minimum cardinality of local edge metric generator of G if $r(v c \mid S) \neq r(c u \mid S)$ for every pair $v c, c u$ of adjacent edges in G. In this paper, we focus on investigating the local edge metric dimension of some special graph.

Figure 1. The local edge metric dimension of path graph order 6 and its representation respect to S

2. Main Results

This paper focus to find the exact value of the local edge metric dimension on some graphs. We begin this section with the result of local edge metric dimension of path graph in the following theorem.

Theorem 2.1 The local edge metric dimension is 1 if only if $G=P_{n}$ for G is a connected with n vertices.

Proof. In order to prove this theorem, we will divide the proof into two cases.
Case 1: If the local edge metric dimension is 1 then $G=P_{n}$. The graph P_{n} is a connected graph with $|V|=n$ and $|E|=n-1$. The vertex set $V\left(P_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and edge set $E\left(P_{n}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\}$. Choose $S=\left\{x_{1}\right\}$, where S is the local edge metric generator of G, thus $r(e \mid S)=d(e, S), \forall e \in E(G)$. Since S is the local edge metric generator, thus $r(e \mid S)$ for every element of G consist of 1 - tupple with the element of $r(e \mid S)$ less than n. It is easy to see that $r(e \mid S)=d(e, S)$, for $\forall e \in E(G)$ has different representation, thus $\exists x_{i} \in V(G)$ with $d\left(x_{i}, v_{1}\right)=n-1$. Since $d\left(x_{i}, v_{1}\right)=n-1$, there exist a path with length $n-1$ in G. Furthermore, Since there exist one path with the length $n-1$ in G, thus G is P_{n}. It concludes that If the local edge metric dimension is 1 then $G=P_{n}$

Case 2: If $G=P_{n}$, then the local edge metric dimension is 1
The graph P_{n} is a connected graph with $|V|=n$ and $|E|=n-1$. The vertex set $V\left(P_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and edge set $E\left(P_{n}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\}$. Choose x_{1} as the initial vertex of P_{n}. Suppose that $S=x_{1}$, it is easy to see that x_{1} is the local edge metric generator. Since $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a path, thus $d\left(x_{i} x_{i+1} \mid x_{1}\right)=i-1$ for $2 \leq i \leq n$. Hence, $\forall e_{1}, e_{2} \in E(G), r\left(e_{1} \mid S\right) \neq r\left(e_{2} \mid S\right)$, where e_{1}, e_{2} is an adjacent edges. Thus S is the local metric generator of P_{n}. Furthermore, we will prove that $S=v_{1}$ is the minimum cardinality of the local metric generator. Since there does not exist the local metric generator less than 1 , thus $S=v_{1}$ is the minimum local metric generator. It implies that if $G=P_{n}$ then the local edge metric dimension is 1 .

Based on case 1 and case 2, it can be concluded that the local edge metric dimension is 1 if only if $G=P_{n}$. The figure of the local edge metric dimension of path graph order 6 can be seen in Figure 1.

Theorem 2.2 Let L_{n} be a ladder graph graph with $n \geq 2$. The local edge metric dimension of L_{n} is 2 .

Proof : The ladder graph L_{n} is a graph with $2 n$ vertices. The vertex set $V\left(L_{n}\right)=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and edge set $E\left(C_{n}\right)=\left\{x_{i} x_{i+1} \cup y_{i} y_{i+1} \cup x_{i} y_{i} ; 1 \leq i \leq n-1\right\}$. The cardinality of vertex set and edge set, respectively are $\left|V\left(L_{n}\right)\right|=2 n$ and $\left|E\left(C_{n}\right)\right|=3 n-2$. Let we begin the proof by proving the upper bound of local edge metric dimension of ladder graph L_{n}. By choosing $S=\left\{x_{1}, y_{1}\right\}$ as the edge metric generator, we will have the representation of all edges in ladder graph respect to S in table 1. According to Table 1, it can be identified

Table 1. The representation of edges in Ladder graph L_{n} respect to local edge metric generator S

e	$r(e \mid S)$	condition
$x_{i} x_{i+1}$	$(i-1, i)$	$2 \leq i \leq n-1$
$y_{i} x_{i+1}$	$(i-1, i)$	$2 \leq i \leq n-1$
$x_{i} y_{i}$	$(i, i-1)$	$2 \leq i \leq n-1$

Figure 2. The local edge metric dimension of L_{6}
that the representation of all adjacent edges in ladder graph n with respect to S are distinct. Since the representation of all edges respect to S are distinct, it can be said that S is the local edge metric generator of ladder graph n with $|S|=2$. Therefore, we have $\operatorname{diml}_{E}\left(C_{n}\right) \leq 2$.

In the next step, we will prove $\operatorname{diml}_{E}\left(L_{n}\right) \geq 2$. Assume that $\operatorname{diml}_{E}\left(L_{n}\right)<2$. We take $|S|=1$ and $x_{i} \in S$ such that there are 1 vertices in L_{n} as the element of local edge metric generator. If we take 1 vertex as local edge metric generator in any vertices of L_{n}, there will be two possible conditions. These condition are as follow:
a) suppose we take 1 vertex in y_{i}, where $2 \leq i \leq n-1$ as local edge metric generator, there will be an adjacent edges such as $y_{i} y_{i+1}$ and $y_{i} y_{i-1}$ which has the same representation respect to S. The representation of $y_{i} y_{i+1}$ and $y_{i} y_{i-1}$ respect to S is (0). If we take y_{1} as local edge metric generator, $y_{1} y_{2}$ and $x_{1} y_{1}$ will have the same representation. If we take y_{n} as local edge metric generator, $y_{n-2} y_{n}$ and $x_{n} y_{n}$ will have the same representation. Thus, its contradiction with our definition of local edge metric dimension, where $r(v c \mid S) \neq r(c u \mid S)$ for every pair $v c, c u$ of adjacent edges of G.
b) suppose we take 1 vertex in x_{i}, where $2 \leq i \leq n-1$ as local edge metric generator, there will be an adjacent edges such as $x_{i} x_{i+1}$ and $x_{i} x_{i-1}$ which has the same representation respect to S. The representation of $x_{i} x_{i+1}$ and $x_{i} x_{i-1}$ respect to S is (0). If we take x_{1} as local edge metric generator, $x_{1} x_{2}$ and $x_{1} y_{1}$ will have the same representation. If we take x_{n} as local edge metric generator, $x_{n-2} x_{n}$ and $x_{n} x_{n}$ will have the same representation. Thus, its contradiction with our definition of local edge metric dimension, where $r(v c \mid S) \neq r(c u \mid S)$ for every pair $v c, c u$ of adjacent edges of G.

Based on the analysis above, It can be concluded that $\operatorname{diml}_{E}\left(L_{n}\right) \geq 2$. Since, $\operatorname{diml}_{E}\left(L_{n}\right) \geq 2$ and $\operatorname{diml}_{E}\left(L_{n}\right) \leq 2$, thus $\operatorname{diml}_{E}\left(L_{n}\right)=2$. The figure 2 showed the $\operatorname{diml}_{E}\left(L_{6}\right)$.

Theorem 2.3 Let C_{n} be a cycle graph with $n \geq 2$. The local edge metric dimension of C_{n} is 2 .
The cycle C_{n} is a cyclic graph with n vertices. The vertex set $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E\left(C_{n}\right)=\left\{v_{1} v_{n}, v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\}$. The cardinality of vertex set and edge set,

Table 2. The representation of edges in cycle graph C_{n} respect to local edge metric generator S, for n is odd

e	$r(e \mid S)$	condition
$v_{1} v_{2}$	$(0,1)$	
$v_{n-1} v_{n}$	$(1,0)$	$n \geq 3$
$v_{1} v_{N}$	$(0,0)$	$n \geq 3$
$v_{i} v_{i+1}$	$(i-1, i)$	$2 \leq i \leq \frac{n-2}{2}$
$v_{i} v_{i+1}$	$(n-i, n-i-1)$	$\frac{n+1}{2} \leq i \leq n-2$

Table 3. The representation of edges in cycle graph C_{n} respect to local edge metric generator S, for n is even

e	$r(e \mid S)$	condition
$v_{1} v_{2}$	$(0,1)$	
$v_{n-1} v_{n}$	$(1,0)$	$n \geq 3$
$v_{1} v_{N}$	$(0,0)$	$n \geq 3$
$v_{i} v_{i+1}$	$(i-1, i)$	$2 \leq i \leq \frac{n-2}{2}$
$v_{i} v_{i+1}$	$(n-i, n-i-11)$	$\frac{n}{2} \leq i \leq n-2$

respectively are $\left|V\left(C_{n}\right)\right|=n$ and $\left|E\left(C_{n}\right)\right|=n$. The proof divided into two cases as follows.
Case 1: For cycle graph order n with n is odd, we will prove that the local edge metric dimension of cycle graph is two.

First, we should identify the upper bound of local edge metric dimension of cycle graph C_{n} for n is odd by observing table 2. Suppose the edge metric generator is $S=v_{1}, v_{n}$. According to Table 2, it can be identified that the representation of all adjacent edges in C_{n} with respect to S are distinct. Based on that fact, S is the local edge metric generator of star graph order n. Thus, $\operatorname{diml}_{E}\left(C_{n}\right) \leq 2$ for n is odd.

Furthermore, we propose the proof of lower bound of the local edge metric dimension of C_{n}. suppose we take v_{i}, there will be an adjacent edges such as $v_{i} v_{i+1}$ and $v_{i} v_{i-1}$ which has the same representation respect to S. The representation of $v_{i} v_{i+1}$ and $v_{i} v_{i-1}$ respect to S is (0). Thus, its contradiction with our definition of local edge metric dimension, where $r(v c \mid S) \neq r(c u \mid S)$ for every pair $v c, c u$ of adjacent edges of G. It can be concluded that $\operatorname{diml}_{E}\left(C_{n}\right) \geq 2$ for n is odd.

Based on that observation, we can say that $\operatorname{diml}_{E}\left(C_{n}\right)=2$ for n is odd.
Case 2:For cycle graph order n with n is even, it will be investigated that $\operatorname{diml}_{E}\left(C_{n}\right)=2$.
First, we should identify the upper bound of local edge metric dimension of cycle graph C_{n} for n is even. By choosing the edge metric generator of C_{n} is $S=v_{1}, v_{n}$, the representation of edges in cycle graph C_{n} respect to local edge metric generator S, for n is even can be seen in 3 . Based on Table 3, all adjacent edges representation of C_{n} with respect to S are distinct, so S is the local edge metric generator of S_{n}. Thus, $\operatorname{diml}_{E}\left(C_{n}\right) \leq 2$.

Furthermore, it will be proven that the lower bound of local edge metric dimension of cycle graph order n is 2 or $\operatorname{diml}_{E}\left(C_{n}\right) \geq 2$ for n is even. Assume that $\operatorname{diml}_{E}\left(C_{n}\right)<2$. We take $|S|=1$ and $w_{i} \in S$ such that there are 1 vertices in C_{n} as the element of local edge metric generator. If we take 1 vertex as local edge metric generator in any vertices of C_{n} suppose we take x_{i}, there will be an adjacent edges such as $x_{i} x_{i+1}$ and $x_{i} x_{i-1}$ which has the same representation respect
to S. The representation of $x_{i} x_{i+1}$ and $x_{i} x_{i-1}$ respect to S is (0). Thus, its contradiction with our definition of local edge metric dimension, where $r(v c \mid S) \neq r(c u \mid S)$ for every pair $v c, c u$ of adjacent edges of G. It can be concluded that $\operatorname{diml}_{E}\left(C_{n}\right) \geq 2$. Based on that observation, it can be concluded that $\operatorname{diml}_{E}\left(C_{n}\right)=2$ for n is even.

Theorem 2.4 Let S_{n} be a star graph with $n \geq 4$. The local edge metric dimension of S_{n} is $n-1$.

Proof. The star graph consist of $n+1$ vertices. It is a tree graph with the set of vertices $\{b\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\}$ and the set of edges $E\left(S_{n}\right)=\left\{b x_{i} ; 1 \leq i \leq n\right\}$.

In order to prove this theorem, we should analyze the bound of local edge metric dimension of S_{n}, which respectively are $\operatorname{diml}_{E}\left(S_{n}\right) \leq n-1$ and $\operatorname{diml}_{E}\left(S_{n}\right) \geq n-1$.

First, it will be shown that $\operatorname{diml}_{E}\left(S_{n}\right) \leq n-1$. By choosing the edge metric generator $S=\left\{x_{i}, 1 \leq i \leq n-1\right\}$, we will find the representation of all edges $e \in E\left(S_{n}\right)$ respect to S in 4. Based on Table 4, it can be seen that all adjacent edges representation in star graph order $n+1$ with respect to S are distinct. Hence, S is the local edge metric generator of S_{n} with $|S|=n-1$. It can be concluded that the upper bound of the local edge metric dimension of star graph is $\operatorname{dim}_{E}\left(S_{n}\right) \leq n-1$.
The next step, we should analyze the lower bound of of local edge metric dimension of star graph order $n+1 S_{n}$. We will prove $\operatorname{diml}_{E}\left(S_{n}\right) \geq n-1$ by assuming the $\operatorname{diml}_{E}\left(S_{n}\right)<n-1$. Let we take $|S|=n-2$ where $k_{i} \in S$ such that there are $n-2$ vertices in pendant as the element of edge metric generator in S_{n}. Since we have $n-2$ vertices in pendant as the element of edge metric generator in S_{n}, we still have two pendants rest in S_{n} which is not belong to edge metric generator S. Suppose that the pendant which is not belong to S is $x_{n} b, x_{n-1} b$ or $x_{n} b, x_{n-1} b \notin S$. Let we consider the distance of $x_{n-1} b$ and $x_{n} b$ to k_{i}. By the definition of distace of edge and vertex, we have $d\left(x_{n-1} b, k_{1}\right)=\min \left\{d\left(x_{n-1}, k_{1}\right), d\left(b, k_{1}\right)\right\}=\min \left\{d\left(x_{n-1}, b\right)+d\left(b, k_{1}\right), d\left(b, k_{1}\right)\right\}=d\left(b, k_{1}\right)$, $d\left(x_{n-1} b, k_{2}\right)=\min \left\{d\left(x_{n-1}, k_{2}\right), d\left(c, k_{2}\right)\right\}=\min \left\{d\left(x_{n-1}, b\right)+d\left(b, k_{2}\right), d\left(b, k_{2}\right)\right\}=d\left(b, k_{2}\right), \ldots$, $d\left(x_{n-1} b, k_{i}\right)=\min \left\{d\left(x_{n-1}, k_{i}\right), d\left(b, k_{i}\right)\right\}=\min \left\{d\left(x_{n-1}, b\right)+d\left(b, k_{i}\right), d\left(b, k_{i}\right)\right\}=d\left(b, k_{i}\right)$, with $1 \leq i \leq|S|$ and $d\left(x_{n} b, k_{1}\right)=\min \left\{d\left(x_{n}, k_{1}\right), d\left(b, k_{1}\right)\right\}=\min \left\{d\left(x_{n}, b\right)+d\left(x_{n}, k_{1}\right), d\left(x_{n}, k_{1}\right)\right\}=$ $d\left(x_{n}, k_{1}\right), d\left(x_{n} b, k_{2}\right)=\min \left\{d\left(x_{n}, k_{2}\right), d\left(b, k_{2}\right)\right\}=\min \left\{d\left(x_{n}, b\right)+d\left(b, k_{2}\right), d\left(b, k_{2}\right)\right\}=d\left(b, k_{2}\right)$, $\ldots, d\left(x_{n} b, k_{i}\right)=\min \left\{d\left(x_{n}, k_{i}\right), d\left(b, k_{i}\right)\right\}=\min \left\{d\left(x_{n}, b\right)+d\left(b, k_{i}\right), d\left(b, w_{i}\right)\right\}=d\left(b, k_{i}\right)$, with $1 \leq i \leq|S|$.
Then, the representation of two pendant vertex $x_{n-1} c$ and $x_{n} c$ respect to S can be written as $r\left(x_{n-1} b \mid S\right)=\left(d\left(x_{n-1} c, k_{1}\right), d\left(x_{n-1} c, k_{2}\right), \ldots, d\left(x_{n-1} b, k_{n-2}\right)\right)=\left(d\left(b, k_{1}\right), d\left(b, k_{2}\right), \ldots, d\left(b, k_{n-2}\right)\right)$ and $r\left(x_{n} b \mid S\right)=\left(d\left(x_{n} b, k_{1}\right), d\left(x_{n} b, k_{2}\right), \ldots, d\left(x_{n} b, k_{n-2}\right)\right)=\left(d\left(b, k_{1}\right), d\left(b, k_{2}\right), \ldots, d\left(b, k_{n-2}\right)\right)$. We can see that $r\left(x_{n-1} b \mid S\right)=r\left(x_{n} b \mid S\right)$. Since every edge in star graph is adjacent, thus $x_{n-1} b$ and $x_{n} b$ are adjacent. It is a contradiction. Furthermore, we should have $n-1$ vertex as local edge metric generator in star's pendant. Since it has been proven that $\operatorname{diml}_{E}\left(S_{n}\right) \leq n-1$ and $\operatorname{diml}_{E}\left(S_{n}\right) \geq n-1$, It can be conclude that $\operatorname{dim}_{E}\left(S_{n}\right)=n-1$.

Theorem 2.5 Let W_{n} be a wheel graph with $n \geq 4$. The local edge metric dimension of W_{n} is $n-1$.

Proof. The wheel graph is a connected graph with the cardinality of vertex is $n+1$. The vertex set $\{z\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\}$ and edge set $E\left(W_{n}\right)=\left\{z x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+} ; 1 \leq i \leq n-1\right\}$. Vertex c is a central vertex and x_{i} are pendant vertex. Wheel graph is the union of cycle graph and star graph. In order to prove the local edge metric dimension of W_{n} is $n-1$ or $\operatorname{diml} l_{E}\left(W_{n}\right)=n-1$, we will show the lower bound and upper bound of local edge metric dimension of wheel graph respectively are $\operatorname{diml}_{E}\left(W_{n}\right) \leq n-1$ and $\operatorname{diml}_{E}\left(W_{n}\right) \geq n-1$.

Table 4. The representation of edges in star graph S_{n} respect to local edge metric generator S

e	$r(e \mid S)$	condition
$c x_{1}$	$(0, \underbrace{1, \ldots, 1}_{n-2})$	
$c x_{i}$	$\underbrace{(1, \ldots, 1}_{i-1}, 0, \underbrace{1, \ldots, 1}_{n-2-1})$	$2 \leq i \leq n-1$
$c x_{n}$	$\underbrace{1, \ldots, 1}_{n-1})$	$n \geq 2$

Table 5. The representation of edges in wheel graph W_{n} respect to local edge metric generator S

e	$r(e \mid S)$	condition
$c x_{1}$	$(0, \underbrace{1, \ldots, 1}_{n-2})$	
$c x_{i}$	$(\underbrace{1, \ldots, 1}_{i-1}, \underbrace{1, \ldots, 1}_{(\underbrace{1, \ldots, 1}_{n-i-1})})$	$2 \leq i \leq n-1$
$c x_{n}$	$(0,0,1, \underbrace{2, \ldots, 2}_{n-1})$	$n \geq 3$
$x_{1} x_{2}$	$(0,1, \underbrace{2, \ldots, 2}_{n-4}, 1)$	$n \geq 3$
$x_{n} x_{1}$	$\underbrace{2, \ldots, 2}_{i-4}, 1,0,0,1, \underbrace{2, \ldots, 2}_{n-i-3})$	$2 \leq i \leq n-2$
$x_{i} x_{i+1}$		

First, we should investigate the upper bound of local edge metric dimension of W_{n}. It will be shown that $\operatorname{diml}_{E}\left(S_{n}\right) \leq n-1$. By choosing the edge metric generator $S=\left\{x_{i}, 1 \leq i \leq n-1\right\}$, we will have the edge representation in $W_{n}, e \in E\left(W_{n}\right)$ respect to S in 5 . By analyzing 5 , it can be seen that all adjacent edges representation in W_{n} with respect to S are distinct. Hence, S is the local edge metric generator of W_{n} with $|W|=n-1$. It can be concluded that the upper bound of the local edge metric dimension of wheel graph is $n-2, \operatorname{dim}_{E}\left(S_{n}\right) \leq n-1$

The next step, we should analyze the lower bound of of local edge metric dimension of wheel graph W_{n}. We will prove $\operatorname{diml}_{E}\left(W_{n}\right) \geq n-1$ by assuming the $\operatorname{diml}_{E}\left(W_{n}\right)<n-1$. We know that wheel graph is a graph consist of the union of star graph and cycle graph. Let we consider the star graph as the component of wheel graph to prove the lower bound. Let we take $|S|=n-2$ where $k_{i} \in S$. there will be $n-2$ vertices in pendant as the element of edge metric generator in W_{n}. Since we have $n-2$ vertices in pendant as the element of edge metric generator in W_{n}, we still have two pendants left that connect central vertex with another vertex in spoke in W_{n} which is not belong to edge metric generator S. Assume that the pendant left $u c$ and $v c$. By the definition of distance in edge and vertex, especially the distance of $u c$ and $v c$ to k_{i}, we will have the following term : $d\left(u z, k_{1}\right)=\min \left\{d\left(u, k_{1}\right), d\left(z, k_{1}\right)\right\}=\min \left\{d(u, z)+d\left(z, k_{1}\right), d\left(z, k_{1}\right)\right\}=$ $d\left(z, k_{1}\right), d\left(u z, k_{2}\right)=\min \left\{d\left(u, k_{2}\right), d\left(z, k_{2}\right)\right\}=\min \left\{d(u, z)+d\left(z, k_{2}\right), d\left(z, k_{2}\right)\right\}=d\left(z, k_{2}\right)$, $\ldots \quad, d\left(u z, k_{i}\right)=\min \left\{d\left(u, k_{i}\right), d\left(z, k_{i}\right)\right\}=\min \left\{d(u, z)+d\left(z, k_{i}\right), d\left(z, k_{i}\right)\right\}=d\left(z, k_{i}\right)$, with $1 \leq i \leq|S|$ and $d\left(v z, k_{1}\right)=\min \left\{d\left(v, k_{1}\right), d\left(z, k_{1}\right)\right\}=\min \left\{d(v, z)+d\left(z, k_{1}\right), d\left(z, k_{1}\right)\right\}=d\left(z, k_{1}\right)$, $d\left(v z, k_{2}\right)=\min \left\{d\left(v, k_{2}\right), d\left(z, k_{2}\right)\right\}=\min \left\{d(v, z)+d\left(z, k_{2}\right), d\left(z, k_{2}\right)\right\}=d\left(z, k_{2}\right), \ldots, d\left(v z, k_{i}\right)=$
$\min \left\{d\left(v, k_{i}\right), d\left(z, k_{i}\right)\right\}=\min \left\{d(v, z)+d\left(z, k_{i}\right), d\left(z, k_{i}\right)\right\}=d\left(z, k_{i}\right)$, with $1 \leq i \leq|S|$.
Then, the metric representation of two pendant vertex $u z$ and $v z$ respect to S can be written as $r(u z \mid S)=\left(d\left(u z, k_{1}\right), d\left(u z, k_{2}\right), \ldots, d\left(u z, k_{n-2}\right)\right)=\left(d\left(z, k_{1}\right), d\left(z, k_{2}\right), \ldots, d\left(z, k_{n-2}\right)\right)$ and $r(v z \mid S)=\left(d\left(v z, k_{1}\right), d\left(v z, k_{2}\right), \ldots, d\left(v z, k_{n-2}\right)\right)=\left(d\left(z, k_{1}\right), d\left(z, k_{2}\right), \ldots, d\left(z, k_{n-2}\right)\right)$. We can see that $r(u z \mid S)=r(v z \mid S)$. Since $u z$ and $v z$ in wheel graph are adjacent, thus it is a contradiction. Furthermore, we should have $n-1$ local edge metric generator. Since it has been proven that $\operatorname{diml}_{E}\left(W_{n}\right) \leq n-1$ and $\operatorname{diml}_{E}\left(W_{n}\right) \geq n-1$, it can be concluded that $\operatorname{dim}_{E}\left(W_{n}\right)=n-1$.

3. Concluding Remarks

We have found the exact values of local edge metric dimension on some graphs namely path graph, cycle graph, ladder graph, star graph, and wheel graph. Since we just initiate this study, there still have many open problems related to the local edge metric dimension topic. Thus, we propose the following open problems:
Open Problem 1 Characterize the local edge metric dimension on special families of graph especially for any reguler graphs, families of tree, planar graphs, graph operation of any simple graphs.

Open Problem 2 Find the sharpest upper bound of local edge metric dimension of any graph.

4. Acknowledgments

We would like to thanks for support of Combinatoric Graph Theory and Network Topology (CGANT) research group- University of Jember of year 2020.

5. References

[1] Adawiyah R, Agustin I H, Dafik, Slamin and Albirri E R 2018 Related Wheel Graph and Its Locating Edge Domination Number IOP Conf. Series: Journal of Physics 1022012007
[2] Adawiyah R, Dafik, Alfarisi R, Prihandini R M, and Agustin I H 2019 Edge Metric Dimension on Some Families of Tree IOP Conf. Series: Journal of Physics 1180012005
[3] Chartrand G, Eroh L, Johnson M A and Oellermann O R 2000 Resolvability in Graphs and the Metric Dimension of a Graph Discrete Appl. Math. 105 99-113
[4] Dafik, Agustin I H, Surahmat, Syafrizal Sy and Alfarisi R 2017 On non-isolated resolving number of some graph operations Far East Journal of Mathematical Sciences 102 (2) 2473-2492
[5] Dafik, Purnapraja A K and Hidayat R 2015 Cycle-Super Antimagicness of Connected and Disconnected Tensor Product of Graphs Procedia Computer Science 74 pp 93-99
[6] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory (Second Edition CRC Press Taylor and Francis Group)
[7] Chartrand G and Lesniak L Graphs and digraphs 3rd ed (London: Chapman and Hall), (2000).
[8] Hartsfield N dan Ringel G 1994 Pearls in Graph Theory (Academic Press. United Kingdom)
[9] Harary F and Melter RA 1976 On The metric dimension of a graph Ars Combin 2 191-195
[10] Kelenc A, Trantik N, and Yero I G 2016 Uniquely identifying the edge of a graph: the edge metric dimension preprint arXiv:1602.00291v1 [math.CO].
[11] Nasir R, Zafar S, and Zahid Z Edge Metric Dimension of Graph In Press "ARS Combinatorics"
[12] Slater P J 1975 Leaves of trees Proc. 6th Southeast Conf. Comb., Graph Theory, Comput. Boca Rotan 14 549-559.

