Show simple item record

dc.contributor.authorBACHTIAR, Hemas Hafidh
dc.contributor.authorFACHRI, Boy Arief
dc.contributor.authorILMINNAFIK, Nasrul
dc.date.accessioned2021-04-03T06:27:04Z
dc.date.available2021-04-03T06:27:04Z
dc.date.issued2020-09-26
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/103841
dc.description.abstractLaminar burning velocity is the volume of unburned gas per unit time distributed by the gas consumed. The laminar burning velocity has an important role because it contains basic information about fuel reactivity, diffusivity, and exotherms in the combustion process. In addition, laminar burning velocity is important to identify for calculation in fuel storage explosion protection. This study explains the characteristics of the laminar burning velocity of Calophyllum inophyllum methyl ester using perforated burner method. The fuel used are 0%, 20%, 40%, 60%, 80%, and 100% (B0, B20, B40, B60, B80 and B100) blending fuel of Calophyllum inophyllum methyl ester and petroleum diesel. Fuel rate is 60 ml/hour (1 ml/minute) using a syringe pump to control which is then evaporated at 180 °C. The observations of laminar burning velocity with variations of equivalent ratio Ø 0.6 to Ø 1.4 using B0 to B100 fuel showed that the value of laminar burning velocity rate continued to decrease along with the increase in the Calophyllum inophyllum methyl ester blending ratio. Blending fuel B20, flame can be observed with variations of Ø 0.6 to Ø 1.4, while in materials on fuel B40, B60, B80, and B100 the flame cannot burn up at equivalent ratio Ø 0.6. Flammability limits of blending B40, B60, B80, and B100 fuels which are only able to burn up at an equivalent ratio of more than 0.6, this phenomenon shows that the maximum ratio of Calophyllum inophyllum methyl ester blending has characteristics approach diesel is the B20 blending ratio. Laminar burning velocity for each equivalent ratio on each fuel continues to decline, even at Ø = 0.6 only B0 and B20 fuels are burned up and observable, while other fuels do not ignite and achieve flammability limits. The increasing biodiesel blend shows the laminar burning velocity in each of the equivalent ratio continues to decline, this is caused by several factors such as density, viscosity, auto ignition, and increasing C-O fuel ratio.en_US
dc.language.isoenen_US
dc.publisherAIP Conference Proceedingsen_US
dc.subjectLaminar Burning Velocity of Calophyllum inophyllum Methyl Ester on Perforated Burneren_US
dc.titleLaminar Burning Velocity of Calophyllum inophyllum Methyl Ester on Perforated Burneren_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI1910101#TeknikMesin
dc.identifier.nidnNIDN0014117104
dc.identifier.nidnNIDN0001097406


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record