• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Conference Proceeding
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Conference Proceeding
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Laminar Burning Velocity of Calophyllum inophyllum Methyl Ester on Perforated Burner

    Thumbnail
    View/Open
    FT_PROSIDING_Laminar burning velocity of Calophyllum_NASRUL.pdf (2.767Mb)
    Date
    2020-09-26
    Author
    BACHTIAR, Hemas Hafidh
    FACHRI, Boy Arief
    ILMINNAFIK, Nasrul
    Metadata
    Show full item record
    Abstract
    Laminar burning velocity is the volume of unburned gas per unit time distributed by the gas consumed. The laminar burning velocity has an important role because it contains basic information about fuel reactivity, diffusivity, and exotherms in the combustion process. In addition, laminar burning velocity is important to identify for calculation in fuel storage explosion protection. This study explains the characteristics of the laminar burning velocity of Calophyllum inophyllum methyl ester using perforated burner method. The fuel used are 0%, 20%, 40%, 60%, 80%, and 100% (B0, B20, B40, B60, B80 and B100) blending fuel of Calophyllum inophyllum methyl ester and petroleum diesel. Fuel rate is 60 ml/hour (1 ml/minute) using a syringe pump to control which is then evaporated at 180 °C. The observations of laminar burning velocity with variations of equivalent ratio Ø 0.6 to Ø 1.4 using B0 to B100 fuel showed that the value of laminar burning velocity rate continued to decrease along with the increase in the Calophyllum inophyllum methyl ester blending ratio. Blending fuel B20, flame can be observed with variations of Ø 0.6 to Ø 1.4, while in materials on fuel B40, B60, B80, and B100 the flame cannot burn up at equivalent ratio Ø 0.6. Flammability limits of blending B40, B60, B80, and B100 fuels which are only able to burn up at an equivalent ratio of more than 0.6, this phenomenon shows that the maximum ratio of Calophyllum inophyllum methyl ester blending has characteristics approach diesel is the B20 blending ratio. Laminar burning velocity for each equivalent ratio on each fuel continues to decline, even at Ø = 0.6 only B0 and B20 fuels are burned up and observable, while other fuels do not ignite and achieve flammability limits. The increasing biodiesel blend shows the laminar burning velocity in each of the equivalent ratio continues to decline, this is caused by several factors such as density, viscosity, auto ignition, and increasing C-O fuel ratio.
    URI
    http://repository.unej.ac.id/handle/123456789/103841
    Collections
    • LSP-Conference Proceeding [1877]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository