Show simple item record

dc.contributor.authorArnasyitha Yulianti Soelistya., Dafik., Arif Fatahillah
dc.date.accessioned2016-02-18T09:24:21Z
dc.date.available2016-02-18T09:24:21Z
dc.date.issued2016-02-18
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/73339
dc.description.abstractA graph $G$ of order $p$ and size $q$ is called an $(a,d)$-edge-antimagic total if there exist a bijection $f : V(G)\cup E(G) \to \{1,2,\dots,p+q\}$ such that the edge-weights, $w(uv)=f(u)+f(v)+f(uv), uv \in E(G)$, form an arithmetic sequence with first term $a$ and common difference $d$. Such a graph is called super if the smallest possible labels appear on the vertices. In this paper we study a super edge-antimagic total labeling of Graph Shackle ($F_6, B_2, n$) and we will use it to develop a polyalphabetic cryptosystem.en_US
dc.description.sponsorshipCGANT UNEJen_US
dc.language.isoiden_US
dc.relation.ispartofseriesSemnas Mat dan Pembelajaran;5/11/2015
dc.subjectsuper edge antimagic total, polyalphabetic cryptosystem, graph shackle ($F_6, B_2, n$)en_US
dc.titleSuper (a,d)-edge Antimagic Total Labeling of\\ Shackle ($F_6, B_2, n$) for Developing a Polyalphabetic Cryptosystemen_US
dc.typeWorking Paperen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • MIPA [81]
    Abstract artikel jurnal yang dihasilkan oleh staf Unej (fulltext bagi yg open access)

Show simple item record