dc.contributor.author | Arnasyitha Yulianti Soelistya., Dafik., Arif Fatahillah | |
dc.date.accessioned | 2016-02-18T09:24:21Z | |
dc.date.available | 2016-02-18T09:24:21Z | |
dc.date.issued | 2016-02-18 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/73339 | |
dc.description.abstract | A graph $G$ of order $p$ and size $q$ is called an $(a,d)$-edge-antimagic total
if there exist a bijection $f : V(G)\cup E(G)
\to \{1,2,\dots,p+q\}$ such that the edge-weights,
$w(uv)=f(u)+f(v)+f(uv), uv \in E(G)$, form an arithmetic sequence
with first term $a$ and common difference $d$. Such a graph is
called super if the smallest possible labels appear on the
vertices. In this paper we study a super edge-antimagic total
labeling of Graph Shackle ($F_6, B_2,
n$) and we will use it to develop a polyalphabetic cryptosystem. | en_US |
dc.description.sponsorship | CGANT UNEJ | en_US |
dc.language.iso | id | en_US |
dc.relation.ispartofseries | Semnas Mat dan Pembelajaran;5/11/2015 | |
dc.subject | super edge antimagic total, polyalphabetic cryptosystem, graph shackle ($F_6, B_2, n$) | en_US |
dc.title | Super (a,d)-edge Antimagic Total Labeling of\\ Shackle ($F_6, B_2, n$) for Developing a Polyalphabetic Cryptosystem | en_US |
dc.type | Working Paper | en_US |