dc.contributor.author | Novri Anggraeni., Dafik., Slamin | |
dc.date.accessioned | 2016-02-18T08:46:03Z | |
dc.date.available | 2016-02-18T08:46:03Z | |
dc.date.issued | 2016-02-18 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/73332 | |
dc.description.abstract | A graph $G(V,E)$ has a $\mathcal{H}$-covering if every
edge in $E$ belongs to a subgraph of $G$ isomorphic to
$\mathcal{H}$. An $(a,d)$-$\mathcal{H}$-antimagic total covering is
a total labeling $\lambda$ from $V(G)\cup E(G)$ onto the integers
$\{1,2,3,...,|V(G)\cup E(G)|\}$ with the property that, for every
subgraph $A$ of $G$ isomorphic to $\mathcal{H}$ the
$\sum{A}=\sum_{v\in{V(A)}}\lambda{(v)}+\sum_{e\in{E(A)}}\lambda{(e)}$
forms an arithmetic sequence. A graph that admits such a labeling is
called an $(a,d)$-$\mathcal{H}$-antimagic total covering. In
addition, if $\{\lambda{(v)}\}_{v\in{V}}=\{1,...,|V|\}$, then the
graph is called $\mathcal{H}$-super antimagic graph. In this paper
we study $\mathcal{H}$-covering of amalgamation of wheel graph and
also to develop polyalphabetic chiper of cryptosystem from a secret
massage. | en_US |
dc.description.sponsorship | CGANT UNEJ | en_US |
dc.language.iso | id | en_US |
dc.relation.ispartofseries | Semnas Mat dan Pembelajaran;5/11/2015 | |
dc.subject | {H}-super antimagic total covering, wheel graph, and cryptosystem | en_US |
dc.title | Super (a,d)-{H}-Antimagic Total Selimut pada Amalgamasi Graf Roda untuk Pengembangan Kriptosistem Polyalphabetic | en_US |
dc.type | Working Paper | en_US |