Show simple item record

dc.contributor.authorF.R Nurtaatti., Dafik., A.I Kristiana
dc.date.accessioned2016-02-18T08:28:07Z
dc.date.available2016-02-18T08:28:07Z
dc.date.issued2016-02-18
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/73329
dc.description.abstractA graph $G$ of order $p$, size $q$ and face $r$ is called a super $(a,d)$ - face antimagic total labelling, if there exist a bijection $f:V(G)\bigcup E(G)\bigcup F(G)$ $\rightarrow \{1,2,...,p+q+r\}$ such that the set of $s$-sided face weights,$W_{s}=\{a_{s},a_{s}+d,a_{s}+2d,...,a_{s}+(r_{s}-1)d\}$ form an arithmetic sequence for some integers as and common difference $d$ and $r_{s}$ is the number of $s$-sided faces. Such a graph is called super if the smallest possible labels appear on the vertices. In this paper we will study the existence on super $(a,d)$ - face antimagic total labeling of Shackle $C_6^1$ and it can be used to develop a secure poly alphabetic cryptosystemen_US
dc.description.sponsorshipCGANT UNEJen_US
dc.language.isoiden_US
dc.relation.ispartofseriesSemnas Mat dan Pembelajaran;5/11/2015
dc.subjectFace antimagic labeling, cryptosystem.en_US
dc.titleSuper $(a,d)$ - Face Antimagic Total Labeling of Shackle of Cycle Graphen_US
dc.typeWorking Paperen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record