dc.contributor.author | F.R Nurtaatti., Dafik., A.I Kristiana | |
dc.date.accessioned | 2016-02-18T08:28:07Z | |
dc.date.available | 2016-02-18T08:28:07Z | |
dc.date.issued | 2016-02-18 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/73329 | |
dc.description.abstract | A graph $G$ of order $p$, size $q$ and face $r$ is called a super
$(a,d)$ - face antimagic total labelling, if there exist a bijection
$f:V(G)\bigcup E(G)\bigcup F(G)$ $\rightarrow \{1,2,...,p+q+r\}$
such that the set of $s$-sided face
weights,$W_{s}=\{a_{s},a_{s}+d,a_{s}+2d,...,a_{s}+(r_{s}-1)d\}$ form
an arithmetic sequence for some integers as and common difference
$d$ and $r_{s}$ is the number of $s$-sided faces. Such a graph is
called super if the smallest possible labels appear on the vertices.
In this paper we will study the existence on super $(a,d)$ - face
antimagic total labeling of Shackle $C_6^1$ and it can be used to
develop a secure poly alphabetic cryptosystem | en_US |
dc.description.sponsorship | CGANT UNEJ | en_US |
dc.language.iso | id | en_US |
dc.relation.ispartofseries | Semnas Mat dan Pembelajaran;5/11/2015 | |
dc.subject | Face antimagic labeling, cryptosystem. | en_US |
dc.title | Super $(a,d)$ - Face Antimagic Total Labeling of Shackle of Cycle Graph | en_US |
dc.type | Working Paper | en_US |