Show simple item record

dc.contributor.authorNindya Laksmita, A.I. Kristiana, Dafik
dc.date.accessioned2016-02-02T06:46:01Z
dc.date.available2016-02-02T06:46:01Z
dc.date.issued2016-02-02
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/73193
dc.description.abstractLet $G$ be a simple, connected and undirected graph. Let $r,k$ be natural number. By a proper $k$-coloring of a graph $G$, we mean a map $ c : V (G) \rightarrow S$, where $|S| = k$, such that any two adjacent vertices receive different colors. An $r$-dynamic $k$-coloring is a proper $k$-coloring $c$ of $G$ such that $|c(N (v))| \geq min\{r, d(v)\}$ for each vertex $v$ in $V (G)$, where $N (v)$ is the neighborhood of $v$ and $c(S) = \{c(v) : v \in S\}$ for a vertex subset $S$ . The $r$-dynamic chromatic number, written as $\chi_r(G)$, is the minimum $k$ such that $G$ has an $r$-dynamic $k$-coloring. In this paper, we will show some exact values of $\chi_r(G)$ when $G$ is an operation of special graphs.en_US
dc.description.sponsorshipCGANT UNEJen_US
dc.language.isoiden_US
dc.subjectr-dynamic coloring, chromatic number, shackle, graph operationsen_US
dc.titleThe r-Dynamic Chromatic Number of Special Graph Operationsen_US
dc.typeWorking Paperen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record