Show simple item record

dc.contributor.authorAhmad, Ali
dc.contributor.authorAwan, K.M.
dc.contributor.authorJavaid, Imran
dc.contributor.authorSlamin
dc.date.accessioned2013-06-13T02:46:06Z
dc.date.available2013-06-13T02:46:06Z
dc.date.issued2011
dc.identifier.nimNIM512011147156
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/107
dc.description.abstractFor a simple graph G with vertex set V (G) and edge set E(G), a labeling φ : V (G) ∪ E(G) → {1, 2, . . . , k} is called a vertex irregular total klabeling of G if for any two different vertices x and y, their weights wt(x) and wt(y) are distinct. The weight wt(x) of a vertex x in G is the sum of its label and the labels of all edges incident with the given vertex x. The total vertex irregularity strength of G, denoted by tvs(G), is the smallest positive integer k for which G has a vertex irregular total k-labeling. In this paper, we study the total vertex irregularity strength of flower, helm, generalized friendship and web graphs.en_US
dc.description.sponsorshipThe work was supported by the Higher Education Commission Pakistanen_US
dc.language.isoenen_US
dc.publisherAustralasian Journal of Combinatoricsen_US
dc.relation.ispartofseriesVol.51 (2011) 147 – 156.;
dc.subjectTotal vertex irregularity strength of wheel related graphsen_US
dc.titleTotal vertex irregularity strength of wheel related graphsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • MIPA [81]
    Abstract artikel jurnal yang dihasilkan oleh staf Unej (fulltext bagi yg open access)

Show simple item record