Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/99361
Title: Metric Chromatic Number of Unicyclic Graphs
Authors: ALFARISI, Ridho
KRISTIANA, Arika Indah
ALBIRRI, Ermita Rizki
ADAWIYAH, Robiatul
DAFIK, Dafik
Keywords: Metric coloring
metric chromatic number
unicyclic graphs
Issue Date: 9-Jun-2019
Publisher: INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 06, JUNE 2019
Abstract: All graphs in this paper are nontrivial and connected graph. Let 𝑓 ∶ 𝑉 (𝐺) → *1,2, … , 𝑘+ be a vertex coloring of a graph 𝐺where two adjacent vertices may be colored the same color. Consider the color classes Π = *𝐶 , 𝐶 , … , 𝐶 +. For a vertex 𝑣of 𝐺, the representation color of 𝑣is the 𝑘-vector 𝑟(𝑣|Π) = (𝑑(𝑣, , 𝐶 ), 𝑑(𝑣, 𝐶 ), … , 𝑑(𝑣, 𝐶 )), where 𝑑(𝑣, 𝐶 ) = min *𝑑(𝑣, 𝑐); 𝑐 ∈ 𝐶 + . If 𝑟(𝑢|Π) ≠ 𝑟(𝑣|Π) for every two adjacent vertices 𝑢and 𝑣of 𝐺, then 𝑓is a metric coloring of 𝐺. The minimum 𝑘for which 𝐺has a metric 𝑘-coloring is called the metric chromatic number of 𝐺and is denoted by 𝜇(𝐺). The metric chromatic numbers of unicyclic graphs namely tadpole graphs, cycle with 𝑚-pendants, sun graphs, cycle with two pendants, subdivision of sun graphs.
URI: http://repository.unej.ac.id/handle/123456789/99361
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
F. KIP_Jurnal_Arika Indah K_Metric Chromatic Number Of Unicyclic Graphs.pdf2.31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.