Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/99355
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKRISTIANA, Arika Indah-
dc.contributor.authorUTOYO, Muhammad Imam-
dc.contributor.authorDAFIK, Dafik-
dc.contributor.authorAGUSTIN, Ika Hesti-
dc.contributor.authorALFARISI, Ridho-
dc.date.accessioned2020-06-25T02:47:39Z-
dc.date.available2020-06-25T02:47:39Z-
dc.date.issued2019-04-09-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/99355-
dc.description.abstractLet G = (V; E) be a connected graph. A bijection function f : E(G) ! f1; 2; 3; ; E(G)jg is called a local antimagic labeling if for all uv 2 E(G)s, w(u) 6= w(v), where w(u) = e2E(u)f(e). Such that, local antimagic labeling induces a proper vertex kcoloring of graph G that the neighbors of any vertex u receive at least minfr; d(v)g di erent colors. The local antimagic r-dynamic chromatic number, denoted by la r (G) is the minimum k such that graph G has the local antimagic r-dynamic vertex k-coloring. In this paper, we will present the basic results namely the upper bound of the local antimagic r-dynamic chromatic number of some classes graph.en_US
dc.language.isoenen_US
dc.publisherIOP Conf. Series: Earth and Environmental Science 243 (2019) 012077en_US
dc.subjectLocal antimagicen_US
dc.subjectr-dynamicen_US
dc.subjectcoloring of graphsen_US
dc.titleLocal Antimagic r-dynamic Coloring of Graphsen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI0210101#Pendidikan Matematika-
dc.identifier.nidnNIDN0007119401-
dc.identifier.nidnNIDN0002057606-
dc.identifier.nidnNIDN0001016827-
dc.identifier.nidnNIDN0001088401-
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
F. KIP_Jurnal_Arika Indah K_Local antimagic r-dynamic coloring of graphs.pdf656.18 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.