Please use this identifier to cite or link to this item:
                
    
    https://repository.unej.ac.id/xmlui/handle/123456789/86175Full metadata record
| DC Field | Value | Language | 
|---|---|---|
| dc.contributor.author | Prihandini, Rafiantika Megahnia | - | 
| dc.contributor.author | Agustin, Ika Hesti | - | 
| dc.contributor.author | Dafik, Dafik | - | 
| dc.date.accessioned | 2018-07-04T06:40:21Z | - | 
| dc.date.available | 2018-07-04T06:40:21Z | - | 
| dc.date.issued | 2018-07-04 | - | 
| dc.identifier.issn | 1742-6588 | - | 
| dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/86175 | - | 
| dc.description | IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) | en_US | 
| dc.description.abstract | In this paper we use simple and non trivial graph. If there exist a bijective function g : V (G) [ E(G) ! f1; 2; : : : ; jV (G)j + jE(G)jg, such that for all subgraphs P 2 B H of G isomorphic to H, then graph G is called an (a; d)-P B Hantimagic total graph. Furthermore, we can consider the total P B H-weights W(P 2 B H) = P v2V (P 2 BH) f(v) + P f(e) which should form an arithmetic sequence fa; a + d; a + 2d; :::; a + (n ¡ 1)dg, where a and d are positive integers and e2E(P 2 BH) n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super (a; d)-P B H antimagic total labeling for graph operation of comb product namely of G = L B H, where L is a (b; d 2 ¤ )-edge antimagic vertex labeling graph and H is a connected graph. | en_US | 
| dc.language.iso | en | en_US | 
| dc.subject | he Construction of P2⊳H- antimagic graph | en_US | 
| dc.subject | smaller edge | en_US | 
| dc.subject | antimagic vertex labeling | en_US | 
| dc.title | The Construction of P2⊳H- antimagic graph using smaller edge - antimagic vertex labeling | en_US | 
| dc.type | Article | en_US | 
| Appears in Collections: | LSP-Jurnal Ilmiah Dosen | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| F. MIPA_Jurnal_Ika Hesti_The Construction of P2.pdf | 610.59 kB | Adobe PDF | View/Open | 
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

