Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/86122
Title: | Local Edge Antimagic Coloring of Comb Product of Graphs |
Authors: | Agustin, Ika Hesti Hasan, Mohammad Dafik, Dafik Alfarisi, Ridho Kristiana, Arika Indah Prihandini, Rafiantika Megahnia |
Keywords: | Antimagic labeling Local antimagic edge coloring Local antimagic edge chromatic number comb product |
Issue Date: | 3-Jul-2018 |
Abstract: | All graph in this paper are ¯nite, simple and connected graph. Let G(V; E) be a graph of vertex set V and edge set E. A bijection f : V (G) ¡! f1; 2; 3; :::; jV (G)jg is called a local edge antimagic labeling if for any two adjacent edges e 1 and e 2 , w(e 1 ) 6 = w(e ), where for e = uv 2 G, w(e) = f(u) + f(v). Thus, any local edge antimagic labeling induces a proper edge coloring of G if each edge e is assigned the color w(e). The local edge antimagic hromatic number ° 2 (G) is the minimum number of colors taken over all colorings induced by local edge antimagic labelings of G. In this paper, we have found the lower bound of the local edge antimagic coloring of G . H and determine exact value local edge antimagic coloring of G . H. |
Description: | IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012038 |
URI: | http://repository.unej.ac.id/handle/123456789/86122 |
ISSN: | 1742-6596 |
Appears in Collections: | LSP-Jurnal Ilmiah Dosen |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
F. MIPA_Jurnal_Ika Hesti_Local Edge Antimagic.pdf | 672.9 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.