Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/86122
Title: Local Edge Antimagic Coloring of Comb Product of Graphs
Authors: Agustin, Ika Hesti
Hasan, Mohammad
Dafik, Dafik
Alfarisi, Ridho
Kristiana, Arika Indah
Prihandini, Rafiantika Megahnia
Keywords: Antimagic labeling
Local antimagic edge coloring
Local antimagic edge chromatic number
comb product
Issue Date: 3-Jul-2018
Abstract: All graph in this paper are ¯nite, simple and connected graph. Let G(V; E) be a graph of vertex set V and edge set E. A bijection f : V (G) ¡! f1; 2; 3; :::; jV (G)jg is called a local edge antimagic labeling if for any two adjacent edges e 1 and e 2 , w(e 1 ) 6 = w(e ), where for e = uv 2 G, w(e) = f(u) + f(v). Thus, any local edge antimagic labeling induces a proper edge coloring of G if each edge e is assigned the color w(e). The local edge antimagic hromatic number ° 2 (G) is the minimum number of colors taken over all colorings induced by local edge antimagic labelings of G. In this paper, we have found the lower bound of the local edge antimagic coloring of G . H and determine exact value local edge antimagic coloring of G . H.
Description: IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012038
URI: http://repository.unej.ac.id/handle/123456789/86122
ISSN: 1742-6596
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
F. MIPA_Jurnal_Ika Hesti_Local Edge Antimagic.pdf672.9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.