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Abstract. All graph in this paper are finite, simple and connected graph. Let
G(V,E) be a graph of vertex set V and edge set E. A bijection f : V(G) —
{1,2,3,...,]V(G)|} is called a local edge antimagic labeling if for any two adjacent
edges e; and ez, w(e1) # w(ez), where for e = wv € G, w(e) = f(u) + f(v). Thus,
any local edge antimagic labeling induces a proper edge coloring of G if each edge e
is assigned the color w(e). The local edge antimagic hromatic number 7. (G) is the
minimum number of colors taken over all colorings induced by local edge antimagic
labelings of G. In this paper, we have found the lower bound of the local edge antimagic
coloring of G> H and determine exact value local edge antimagic coloring of G> H.

Keywords: Antimagic labeling, Local antimagic edge coloring, Local antimagic edge
chromatic number, comb product.

1. Introduction

All graphs in this paper are finite, simple and connected graph, for detail definition of
graph see [1, 2]. A bijection mapping that assigns natural number to vertices of a graph
is called a graph labeling. In this type of labeling, we consider all weights associated
with each edge. If all the edge weights have the different value then we call the labeling
as an antimagic.

Hartsfield and Ringel [3] introduced the concept of antimagic labeling of a graph.
A bijection f : V(G) — {1,2,3,....|V(G)|} is called a local edge antimagic labeling
if for any two adjacent edges e; and ez, w(e;) # w(ez), where for e = wv € G,
w(e) = f(u) + f(v). Thus, any local edge antimagic labeling induces a proper edge
coloring of G if each edge e is assigned the color w(e). The local edge antimagic chromatic

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1
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number ;e (G) is the minimum number of colors taken over all colorings induced by
local edge antimagic labelings of G.

There are some results related to local antimagic coloring. Arumugam et al. [4]
firstly introduced a new notion of local antimagic vertex coloring of a graph G. They
give an lower bound and upper bound of local antimagic vertex coloring of joint graph
and also give the exact value of local antimagic vertex coloring for path, cycle, complete
graph, friendship, wheel, bipartite and complete bipartite. Furthermore, we get the
relation between local edge antimagic edge chromatic number and local antimagic vertex
chromatic number studied in [4] . In their paper also showed the following observation.

Observation 1.1. [{] For any graph G, Xiea(G) > x(G), where x(G) is a chromatic
number of vertex coloring of G.

Dafik, et. al. [5), 6] determined Super edge-antimagic total labelings of mK, , and
Super edge-antimagicness for a class of disconnected graphs, respectively. The research
related to the coloring of a graph who has researched by ika, et.al [8] about On r-dynamic
coloring of some graph operations. Marr et, al [11] stated the magic rectangles are a
generalization of magic squares. Let local antimagic labeling with 7,.(G) = 2 be the
same as bimagic labeling. For more details on bimagic labelings we refer to Marr et. al.
[10].

Agustin et. al. [9] studied a different type of local antimagic coloring, namely local
edge antimagic coloring. Their research studied the existence of local edge antimagic
coloring of some special graphs and also analyse the lower bound of its local edge
antimagic chromatic number. On this research, they have found the local edge antimagic
chromatic number of path graph P,, cycle graph C,,, friendship graph F,,, ladder graph
Ly, star graph S,,, wheel graph W,,, complete graph K,,, prism graph Pr, and the graphs
Cr,oOmK1 and GOmK;. They also give a lower bound of local edge antimagic chromatic
number its Y, > A(G). The chromatic number of local edge antimagic for path graph
P, cycle graph C,,, friendship graph F,, ladder graph L,, star graph .S,,, wheel graph
W, complete graph K, prism graph Pr, by the following: 4o (Pn) = 2, Viea(Cr) = 3,
'Ylea(]:n) =2n+1, 'Ylea(Ln) =3, 'YZea(Sn) =n, '7lea(Wn) =n+2, 'Ylea(Kn) = 2n — 3, and
'Wea(Prn) =5.

In this paper, we investigate the local edge antimagic coloring of comb product graphs
can be found in [7], [12]. Let G and H be two connected graphs. Let o be a vertex of
H. The comb product between G and H, denoted by G > H, is a graph obtained by
taking one copy of G and |V(G)| copies of H and grafting the i-th copy of H at the
vertex o to the i-th vertex of G. By the definition of comb product, we can say that
V(Gr H) ={(a,u)|a € V(G),u € V(H)} and (a,u)(b,v) € E(Gr> H) whenever a = b
and uv € E(H), or ab € E(G) and u=1v = o.

2. Main Results

In this paper, we have studied the existence of local edge antimagic coloring of comb
product of graphs. We have found the local edge antimagic chromatic number of path
comb path, path comb cycle, cycle and path, cycle and cycle, path and star, cycle and
star. We also analyse the lower bound of its local edge antimagic coloring of G H.
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Theorem 2.1. Let G and H be a connected graph, the local edge antimagic chromatic
number Of G>H is 'YZae(G > H) > ’Ylea(G) + '7lea(H)'

Proof.The comb product between G and H is a graph obtained by one copy of G and
| V(G) | copies of H, and grafting the i vertex of G to the u; in i-th copy of H. Suppose
G admits a local edge antimagic coloring with 7. (G). Furthermore, the subgraph H;
admits a local edge antimagic coloring with 7;,.(H;). By claiming that edge weight in G
and H; are distict and edge weight in every subgraph H; induces a local edge antimagic
of H so that viea(H1) = Yiea(H2) = -+ = Yiea(Hp) = Yiea(H). Thus, we obtain that a
local antimagic labeling of G > H.

Mea(G>H) > |wg(e),e € V(G)| + |ww,(e), e € V(H;)|
= ’Ylea(G) + ’Wea(Hi)
== ’Vlea(G) + ’Ylea(H)

Hence, from the above edge weight it is easy to see that the lower bound local
antimagic labeling of G > H iS Yo (G > H) > Yiea(G) + Yiea(H). O

Theorem 2.2. For n,m > 3, the local edge antimagic chromatic number of P, > P,
with grafting pendant vertex x € V(Py,) S Yiea(Pn > Pp) =4

Proof. The graph P, > P, is a connected graph with vertex set V(P,>Pp,) = {z;; : 1 <
1<n,1 <5< m} and edge set E(PnDPm) = {$i71$i+1,1 1< < nfl}u{l'i’jmfi’jJrl; 1<
i<n,1 <j<m-—1}. Hence |V(P,> Py)| = mn and |E(P,> P,)| = mn — 1. Define a
bijection f : V(P> Py) — {1,2,3, ..., |V(P, > Py,)|} by the following

( Lontitng if i = 1(mod 2) and j = 1(mod 2)
%’ if i = 0(mod 2) and j = 1(mod 2)

flzig) = o
n(m+1)+ =2 if § = 1(mod 2) and j = 0(mod 2)

mn + %7 if i = 0(mod 2) and j = 0(mod 2)

And the edge weight are as follows

& . n+2 i=0(mod 2);
WAL = 41 4= 1(mod 2);

(20575 501) = nm+n+1 j=0(mod 2);
WAL T+ = e+ 1 Jj = 1(mod 2);

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of P, > P, and it gives Yjeq(Py > Py,) < 4. Based on Theorem 2.1, the lower
bound is Yieq (Pn > Prn) > Yiea(Prn) + Yiea(Pm) = 4. Tt concludes that 7eq (P, > Py,) = 4.
g
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Figure 1. Example of Local antimagic edge coloring of P5> Py

Theorem 2.3. For n > 3 and m be even positive integers, the local edge antimagic
chromatic number of P, > Chy 18 Viea(Prn > Cp) =5

Proof. The graph P, > C,, is a connected graph with vertex set V (P, > Cp,) =
{z;j 1 <i<n1 <5 < m} and edge set E(P, > Cp) = {xiixip1n 0 1 <0 <
n— 1} U {2 T j+1, Timxin; 1 <4 <n,1 < j <m—1}. Hence |V(P, > Cp)| = mn
and |E(P, > Cp)| = mn+mn —1. For n > 3. Define a bijection f : V(P, > Cy,) —
{1,2,3,...,|[V(P,>Cy,)|} by the following

( %, if i = 1(mod 2) and j = 1(mod 2)
ntadnit, if i = 0(mod 2) and j = 1(mod 2)
flxiz) =

n(m+1) 4+ #, if i = 1(mod 2) and j = 0(mod 2)

mn + =4, if i = 0(mod 2) and j = 0(mod 2)

And the edge weight are as follows

ezt = n+2 i=0(mod 2);
WZinTit1,1) =1 4 i = 1(mod 2);

(2052 nm+n+1 j=0(mod 2);

WTLTLH1) = pm + 1 j = 1(mod 2);

mn

W, ) = e +n+1

Hence, from the above edge weights, it easy to see that f induces a proper edge

colouring of P, > Cy, and it gives 7eq (P, > Cpy) < 5. Based on Theorem 2.1, the lower

bound is '7lea(Pn > Cm) > 'Ylea(Pn) + 7lea(cm) = 5. It concludes that '7lea(Pn > Cm) =5.
a
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Figure 2. Example of Local antimagic edge coloring of Ps > Cy

Theorem 2.4. For n,m > 3, the local edge antimagic chromatic number of Cp, > Py,
with grafting pendant vertex x € V(Py,) 1S Yiea(Cn > Pr) =5

Proof. The graph C,,> P, is a connected graph with vertex set V(Cp,>Pp,) = {z;j : 1 <
i <n,1 <j<m}andedgeset E(Cp>Py) = {zi12it11: 1 <@ <n—1}U{z; 2 j41;1 <
i<n,1<j<m-—1}U{x;mezi1}. Hence |V(Cp> Pp)| =mn and |E(Cy > Pp,)| = mn.
For n,m > 3. Define a bijection f : V(Cp > Pp,) — {1,2,3,...,|V(C,, > Py,)|} by the

following
%7 if i = 1(mod 2) and j = 1(mod 2)
%7 if i = 0(mod 2) and j = 1(mod 2)
f(ij) = ¥
n(m +1) + HT_”J, if i = 1(mod 2) and j = 0(mod 2)
mn + #7 if i = 0(mod 2) and j = 0(mod 2)

And the edge weight are as follows

n+2 i=0(mod 2);
w(Ti1®it1,1) = n+1 i=1(mod 2);
”T‘M if n is even;

w(T1,1Tn,1) =
"TH if n is odd;

b nm+n+1 j=0(mod 2);
WAL T+ ) = pm + 1 Jj = 1(mod 2);

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of C), > P, and it gives 7eq(Cp > Pp,) < 5. Based on Theorem 2.1, the lower
bound is Yiea(Cr > Pr) = Yiea(Cn) + Viea(Pm) = 5. It concludes that e, (Cp > Pry) = 5.
O
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Figure 3. Example of Local antimagic edge coloring of Cg > P,

Theorem 2.5. For n > 3 and m be even positive integers, the local edge antimagic
chromatic number of Cp > Cpy 18 Yieq (Cn > Cry) = 6

Proof. The graph C,,>C}, is a connected graph with vertex set V(C,>Cp,) = {z;; : 1 <
i <mn,1 <j <m}andedgeset E(C,>Cp,) = {zi12i41,1 : 1 <@ <n—1}U{x; i j41;1 <
i<n,1<j<m—-1}U{z1 121} U{xi12im;1 < i < n}. Hence |V (Cp>Cp,)| = mn and
|E(Cp > Cpy)| = mn+n. For n > 3 and m be even positive integers. Define a bijection
f:V(Chp>Cp) — {1,2,3,...,|V(Cy > Cp)|} by the following

(Lt if i = 1(mod 2) and j = 1(mod 2)
%, if i = 0(mod 2) and j = 1(mod 2)

flzig) = _.
n(m+1) + H#_m, if i = 1(mod 2) and j = 0(mod 2)

| mn if2nj’ if i = 0(mod 2) and j = 0(mod 2)

And the edge weight are as follows

n+2 i=0(mod 2);
w(wi12i41,1) = n+1 i=1(mod 2);
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%*4 if n is even;
w(21,1%n,1) =
”T‘Hi if n is odd;
w(z i a1) = nm+n+1 j=0(mod 2);
LI T nm 41 Jj = 1(mod 2);

mn
w(X,1%im) = - +n+1

Figure 4. Example of Local antimagic edge coloring of Cg > Cy

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of C,, > Cy, and it gives v;eq(Cp > Cp,) < 6. Based on Theorem 2.1, the lower
bound is Vieq (Crn > Cr) = Viea(Cn) + Viea(Cm) = 6. It concludes that jeq(Cr > Cy,) = 6.

O

Theorem 2.6. For n,m > 3, the local edge antimagic chromatic number of P, > S,
with grafting central vertex x € V(Sy,) is Yiea(Pn > Sm) =2 +m

Proof. The graph P, > S,, is a connected graph with vertex set V(P,>S,,) = {z;: 1 <
i <n}U{x;;:1<i<n,1<j<m}andedgeset E(P,>Sy) = {zi12xit11:1 <0 <
n—1}U{z;x;;;1 <i<n,1 <j<m}. Hence |V (P,>Sp)| =n+mnand |E(P,>Sy,)| =
n+mn—1. For n,m > 3. Define a bijection f : V(P,>S,,) — {1,2,3,....|V(P>Sn)|}
by the following
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n+1—%, if i = 0(mod 2)
flai)=¢
%’ if i = 1(mod 2)
%’ if i = 0(mod 2)
f(xij) = o
AN - if = 1(mod 2)
And the edge weight are as follows
(gl n+2 i=0(mod 2);

WTTi+1) = 41 4= 1(mod 2);

w(ziz; ;) =nj+1

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of P, > S, and it gives ¥jeq(Pn > Spm) < 2 + m. Based on Theorem 2.1
the lower bound is Yiea(Prn > Sm) = Yiea(Pn) + Viea(Sm) = 2 + m. It concludes that

Yiea(Pn > Sm) = 2+ m. O
8 . 12 16 6 10 14
o\ [PA7 9 13 /17
1 & 5 3

Figure 5. Example of Local antimagic edge coloring of P> S3

Theorem 2.7. For n,m > 3, the local edge antimagic chromatic number of Cy, > Sy,
with grafting central vertex x € V(Sy,) i Viea(Cn > Sm) =3+ m

Proof. The graph C, > S,, is a connected graph with vertex set V(C, > Sp,) =
{fe; 01 < i <npuU{z;; :1 <i<nl < j < m} and edge set E(Cp > Sy) =
{rirzipin 0 1 < i < n—1}U{zz,} U{ziz ;31 <@ < n,1 < j < m}. Hence
[V(Cp>Sp)| =n+mn and |E(Cy, > Sp)| = n+ mn. For n,m > 3. Define a bijection
f:V(Cyp>Sy) — {1,2,3,...,|V(C, > Sp)|} by the following

n+1-2%  ifi=0(mod 2)
flz) =4
#7 if i = 1(mod 2)
w7 if i = 0(mod 2)
f(zij) = , ,
W, if i = 1(mod 2)

And the edge weight are as follows
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(rirign) = § L= Qmod 2
WITTHL) = 1 i = 1(mod 2);
"TH if n is even;
w(21,1%n,1) =
”TJ“? if n is odd;

w(xiz; j) =nj+1

Hence, from the above edge weights, it easy to see that f induces a proper edge
colouring of Cj, > Sy, and it gives jeq(Cpn > Spm) < 3 + m. Based on Theorem 2.1
the lower bound is ¥ieq(Cn > Sm) > Yea(Cn) + Viea(Sm) = 3 + m. It concludes that
Viea(Cn > Sp) = 3 + m. |

16

12

Figure 6. Example of Local antimagic edge coloring of Cy > S3

3. Conclusion

In this paper we have given an asymptotically tight result on local edge antimagic
coloring of comb product of special graphs, namely path, cycle, and star. We also
determine the lower bound of local edge antimagic coloring of comb product of any two
graphs. Hence the following problem aries naturally.

Open Problem 3.1. Determine exact value local edge antimagic coloring of comb
product for another family graphs?

Open Problem 3.2. Determine exact value local edge antimagic total coloring of comb
product P, > C,, if m is odd integer?


http://repository.unej.ac.id/
http://repository.unej.ac.id/

ICCGANT IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1008 (2018) 012038  doi:10.1088/1742-6596/1008/1/012038

Acknowledgement
We gratefully acknowledge the support from CGANT - University of Jember of year
2017.

References

[1] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory Second Edition CRC Press Taylor
and Francis Group

[2] Chartrand G and Lesniak L 2000 Graphs and digraphs 3rd ed (London: Chapman and Hall)

[3] Hartsfield N dan Ringel G 1994 Pearls in Graph Theory Academic Press. United Kingdom

[4] Arumugam S, Premalatha K, Baca M and Semanicova-Fenovcikova A 2017 Local Antimagic Vertex
Coloring of a Graph, Graphs and Combinatorics 33 275-285

[5] Dafik, Miller M, Ryan J, and Baca M 2011 Super edge-antimagic total labelings of mK, , Ars
Combinatoria 101 97-107.

[6] Dafik, Mirka M, Ryan J, and Baca M 2006 Super edge-antimagicness for a class of disconnected
graphs.

[7] Agustin I H, Dafik, Prihandini R M 2018 P> > H-super antimagic total labeling of comb product of
graph AKCE International Journal of Graphs and Combinatorics In Press

[8] Agustin I H, Dafik and Harsya A Y 2016 On r-dynamic coloring of some graph operations Indonesian
Journal of Combinatorics 1.1 22-30.

[9] Agustin I H, Dafik, Moh. Hasan, Alfarisi R, Prihandini R M 2017 Local Edge Antimagic Coloring of
Graphs Far Fast Journal of Mathematical Sciences.

[10] Marr A, Phillips N C K, Wallis W D 2009 Bimagic labelings AKCE Int. J. Graphs. Combin. 6(1)
155-160.

[11] Marr A, Wallis W D 2013 Magic Graphs 2nd edn. Birkhauser, Switzerland

[12] Saputro S W, Mardiana N and Purwasi I A 2013 The metric dimension of comb product graph In
Graph Theory Conference in Honor of Egawas 60th Birthday September 10

10


http://repository.unej.ac.id/
http://repository.unej.ac.id/

	JOP.pdf (p.1-3)
	uadnew.pdf (p.1-3)

	JOP Ika ICCGANT.pdf (p.4-5)
	38_Hesti_Agustin_2018_J._Phys. _Conf._Ser._1008_012038.pdf (p.6-16)

