Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/84418
Title: LOCAL EDGE ANTIMAGIC COLORING OF GRAPHS
Authors: Agustin, Ika Hesti
Hasan, Mohammad
Dafik, Dafik
Alfarisi, Ridho
Prihandini, Rafiantika Megahnia
Keywords: antimagic labeling
local edge antimagic coloring
local edge antimagic chromatic number
Issue Date: 28-Feb-2018
Abstract: All graphs considered in this paper are finite, simple and connected graphs. Let G(V, E) be a graph with the vertex set V and the edge set E, and let w be the edge weight of graph G. Then a bijection f: V (G) → {1, 2, 3, …, |V (G)|} is called a local edge labeling if for adjacent edges e1 and e2, w(e1) ≠ w(e2), where for e = uv ∈ G, w(e) = f (u) + f (v). It is known that any local edge antimagic labeling induces a proper edge coloring of G if each edge e is assigned the color w(e). The local edge antimagic chromatic number γlea(G) is the minimum number of colors taken over all colorings induced by local edge antimagic labelings of G. In this paper, we initiate to study the existence of local edge antimagic coloring of some special graphs. We also analyse the lower bound of its local edge antimagic chromatic number.
Description: Far East Journal of Mathematical Sciences (FJMS), Volume 102, Number 9, 2017, Pages 1925-1941
URI: http://repository.unej.ac.id/handle/123456789/84418
ISSN: 0972-0871
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
F. MIPA_Jurnal_Ika Hesti_A_Local Edge Antimagic.pdf61.7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.