Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/84418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgustin, Ika Hesti-
dc.contributor.authorHasan, Mohammad-
dc.contributor.authorDafik, Dafik-
dc.contributor.authorAlfarisi, Ridho-
dc.contributor.authorPrihandini, Rafiantika Megahnia-
dc.date.accessioned2018-02-28T02:09:51Z-
dc.date.available2018-02-28T02:09:51Z-
dc.date.issued2018-02-28-
dc.identifier.issn0972-0871-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/84418-
dc.descriptionFar East Journal of Mathematical Sciences (FJMS), Volume 102, Number 9, 2017, Pages 1925-1941en_US
dc.description.abstractAll graphs considered in this paper are finite, simple and connected graphs. Let G(V, E) be a graph with the vertex set V and the edge set E, and let w be the edge weight of graph G. Then a bijection f: V (G) → {1, 2, 3, …, |V (G)|} is called a local edge labeling if for adjacent edges e1 and e2, w(e1) ≠ w(e2), where for e = uv ∈ G, w(e) = f (u) + f (v). It is known that any local edge antimagic labeling induces a proper edge coloring of G if each edge e is assigned the color w(e). The local edge antimagic chromatic number γlea(G) is the minimum number of colors taken over all colorings induced by local edge antimagic labelings of G. In this paper, we initiate to study the existence of local edge antimagic coloring of some special graphs. We also analyse the lower bound of its local edge antimagic chromatic number.en_US
dc.language.isoenen_US
dc.subjectantimagic labelingen_US
dc.subjectlocal edge antimagic coloringen_US
dc.subjectlocal edge antimagic chromatic numberen_US
dc.titleLOCAL EDGE ANTIMAGIC COLORING OF GRAPHSen_US
dc.typeArticleen_US
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
F. MIPA_Jurnal_Ika Hesti_A_Local Edge Antimagic.pdf61.7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.