dc.contributor.author | KRISTIANA, Arika Indah | |
dc.contributor.author | UTOYO, Muhammad Imam | |
dc.contributor.author | DAFIK, Dafik | |
dc.contributor.author | ALFARISI, Ridho | |
dc.date.accessioned | 2020-06-25T04:58:27Z | |
dc.date.available | 2020-06-25T04:58:27Z | |
dc.date.issued | 2018-02-09 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/99377 | |
dc.description.abstract | Let ( )EVG
, be a simple and connected graph of vertex set V and
edge set E. By the 2-distance chromatic number of a graph G, we
mean a map ( ) {
}k
c
GV
,1
,2
,3
...,
: →
such that any two vertices
at distance at most two from each other have different colors. The
minimum number of colors in 2-distance chromatic number of G is
its 2-distance chromatic number, denoted by ( ).
2
Gχ
In this paper, we study the 2-distance chromatic number of some wheel related graphs,
and obtain the 2-distance chromatic number of ( ),
2
nWχ
( ),
2
nFχ
2
( )nH
χ
and ( )nW ,2
2
χ
for
. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Far East Journal of Mathematical Sciences (FJMS), Volume 103, Number 3, 2018, Pages 645-657 | en_US |
dc.subject | 2-distance chromatic number | en_US |
dc.subject | vertex chromatic number | en_US |
dc.subject | some wheel related graphs | en_US |
dc.title | The 2-Distance Chromatic Number of Some Wheel Related Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.kodeprodi | KODEPRODI0210101#Pendidikan Matematika | |
dc.identifier.nidn | NIDN0002057606 | |
dc.identifier.nidn | NIDN0001016827 | |
dc.identifier.nidn | NIDN0007119401 | |