Show simple item record

dc.contributor.authorKRISTIANA, Arika Indah
dc.contributor.authorUTOYO, Muhammad Imam
dc.contributor.authorDAFIK, Dafik
dc.contributor.authorAGUSTIN, Ika Hesti
dc.contributor.authorALFARISI, Ridho
dc.contributor.authorWALUYO, Eko
dc.date.accessioned2020-06-25T04:19:51Z
dc.date.available2020-06-25T04:19:51Z
dc.date.issued2019-05-07
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/99366
dc.description.abstractA function f is called a local irregularity vertex coloring if (i) l : V (G) ! f1; 2; ; kg as vertex irregular k-labeling and w : V (G) ! N, for every uv 2 E(G); w(u) 6= w(v) where w(u) = v2N(u)l(v) and (ii) max(l) = minfmaxflig; livertex irregular labelingg. The chromatic number of local irregularity vertex coloring of G, denoted by lis(G), is the minimum cardinality of the largest label over all such local irregularity vertex coloring. In this article, we study the local irregularity vertex coloring of related wheel graphs and we have found the exact value of their chromatic number local irregularity, namely web graph, helm graph, close helm graph, gear graph, fan graph, sun let graph, and double wheel graph.en_US
dc.language.isoenen_US
dc.publisherIOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012003en_US
dc.subjectChromatic number local irregularen_US
dc.subjectrelated wheel graphen_US
dc.titleOn the Chromatic Number Local Irregularity of Related Wheel Graphen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI0210101#Pendidikan Matematika
dc.identifier.nidnNIDN0002057606
dc.identifier.nidnNIDN0001016827
dc.identifier.nidnNIDN0001088401
dc.identifier.nidnNIDN0007119401


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record