dc.contributor.author | KRISTIANA, Arika Indah | |
dc.contributor.author | UTOYO, Muhammad Imam | |
dc.contributor.author | SLAMIN, Slamin | |
dc.contributor.author | ALFARISI, Ridho | |
dc.contributor.author | AGUSTIN, Ika Hesti | |
dc.contributor.author | M. Venkatachalam | |
dc.date.accessioned | 2020-06-25T03:13:53Z | |
dc.date.available | 2020-06-25T03:13:53Z | |
dc.date.issued | 2019-03-03 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/99360 | |
dc.description.abstract | In this paper we study a new notion of coloring type of graph, namely a local
irregularity vertex coloring. We define is called vertex
irregular -labeling and where . By
a local irregularity vertex coloring, we define a condition for if for every
and vertex irregular labeling .
The chromatic number of local irregularity vertex coloring of , denoted by ,
is the minimum cardinality of the largest label over all such local irregularity vertex coloring. In this article, we study the local irregularity vertex coloring of some graphs
and we have found the exact value of their chromatic number | en_US |
dc.language.iso | en | en_US |
dc.publisher | nternational Journal of Civil Engineering and Technology (IJCIET) Volume 10, Issue 03, March 2019, pp. 1606–1616 | en_US |
dc.subject | Irregularity strength | en_US |
dc.subject | local irregularity | en_US |
dc.subject | vertex coloring | en_US |
dc.subject | path | en_US |
dc.subject | cycle | en_US |
dc.title | Local Irregularity Vertex Coloring of Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.prodi | NIDN0001088401 | |
dc.identifier.kodeprodi | KODEPRODI0210101#Pendidikan Matematika | |
dc.identifier.nidn | NIDN0002057606 | |
dc.identifier.nidn | NIDN0020046701 | |
dc.identifier.nidn | NIDN0007119401 | |