Show simple item record

dc.contributor.authorKRISTIANA, Arika Indah
dc.contributor.authorALFARISI, Ridho
dc.contributor.authorDAFIK, Dafik
dc.contributor.authorAZAHRA, Nadia
dc.date.accessioned2020-06-25T03:01:04Z
dc.date.available2020-06-25T03:01:04Z
dc.date.issued2020-06-09
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/99358
dc.description.abstractAll graph in this paper is connected and simple graph. Let d(u, v) be a distance between any vertex u and v in graph G = (V, E ). A function : ( ) l V G {1, 2, , } k →  is called vertex irregular k-labelling and w V G N→ : () where wu ( ) l v ( ). If for every ∈ = Σ uv EG wu wv∈ ≠ ( ), ( ) ( ) and v Nu ( ) opt l ( ) min(max( );i i vertex irregular labelling) is called a local irregularity vertex coloring. = l l The minimum cardinality of the largest label over all such local irregularity vertex coloring is called chromatic number local irregular, denoted by clis(G). In this paper, we study about local irregularity vertex coloring of families graphs, namely triangular book graph, square book graph, pan graph, subdivision of pan graph, and grid graphs.en_US
dc.language.isoenen_US
dc.publisherJournal of Discrete Mathematical Sciences and Cryptography, (DOI : 10.1080/09720529.2020.1754541)en_US
dc.subjectLocal irregularity vertex coloringen_US
dc.subjectChromatic number local irregularen_US
dc.titleLocal Irregular Vertex Coloring of Some Families Graphen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI0210101#Pendidikan Matematika
dc.identifier.nidnNIDN0002057606
dc.identifier.nidnNIDN0007119401
dc.identifier.nidnNIDN0001016827


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record