Local Irregular Vertex Coloring of Some Families Graph
dc.contributor.author | KRISTIANA, Arika Indah | |
dc.contributor.author | ALFARISI, Ridho | |
dc.contributor.author | DAFIK, Dafik | |
dc.contributor.author | AZAHRA, Nadia | |
dc.date.accessioned | 2020-06-25T03:01:04Z | |
dc.date.available | 2020-06-25T03:01:04Z | |
dc.date.issued | 2020-06-09 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/99358 | |
dc.description.abstract | All graph in this paper is connected and simple graph. Let d(u, v) be a distance between any vertex u and v in graph G = (V, E ). A function : ( ) l V G {1, 2, , } k → is called vertex irregular k-labelling and w V G N→ : () where wu ( ) l v ( ). If for every ∈ = Σ uv EG wu wv∈ ≠ ( ), ( ) ( ) and v Nu ( ) opt l ( ) min(max( );i i vertex irregular labelling) is called a local irregularity vertex coloring. = l l The minimum cardinality of the largest label over all such local irregularity vertex coloring is called chromatic number local irregular, denoted by clis(G). In this paper, we study about local irregularity vertex coloring of families graphs, namely triangular book graph, square book graph, pan graph, subdivision of pan graph, and grid graphs. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Journal of Discrete Mathematical Sciences and Cryptography, (DOI : 10.1080/09720529.2020.1754541) | en_US |
dc.subject | Local irregularity vertex coloring | en_US |
dc.subject | Chromatic number local irregular | en_US |
dc.title | Local Irregular Vertex Coloring of Some Families Graph | en_US |
dc.type | Article | en_US |
dc.identifier.kodeprodi | KODEPRODI0210101#Pendidikan Matematika | |
dc.identifier.nidn | NIDN0002057606 | |
dc.identifier.nidn | NIDN0007119401 | |
dc.identifier.nidn | NIDN0001016827 |
Files in this item
This item appears in the following Collection(s)
-
LSP-Jurnal Ilmiah Dosen [7301]
Koleksi Jurnal Ilmiah Dosen