Show simple item record

dc.contributor.authorJami’in, Mohammad Abu
dc.contributor.authorAnam, Khairul
dc.contributor.authorRulaningtyas, Riries
dc.contributor.authorMudjiono, Urip
dc.contributor.authorAdianto, Adianto
dc.contributor.authorHui-Ming Wee
dc.date.accessioned2020-02-17T04:37:58Z
dc.date.available2020-02-17T04:37:58Z
dc.date.issued2020-02-10
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/97247
dc.description.abstractIn this paper, we propose a method to increase the model accuracy with linear and nonlinear sub-models. The linear submodel applies the least square error (LSE) algorithm and the nonlinear sub-model uses neural networks (NN). The two sub-models are updated hierarchically using the Lyapunov function. The proposed method has two advantages: 1) The neural networks is a multi-parametric model. Using the proposed model, the weights of NN model can be summarized into the coefficients or parameters of auto-regressive eXogenous/auto-regressive moving average (ARX/ARMA) model structure, making it easier to establish control laws, 2) learning rate is updated to ensure the convergence of errors at each training epoch. One can improve the accuracy of model and the whole control system. We have demonstrated by the experimental studies that the proposed technique gives better results when compared to the existing studies.en_US
dc.language.isoenen_US
dc.publisherSPRINGER - Applied Intelligence, Online First Articles, Februari 2020en_US
dc.subjectSystem identificationen_US
dc.subjectHierarchical algorithmen_US
dc.subjectAdaptive learningen_US
dc.subjectPredictionen_US
dc.subjectParameter estimationen_US
dc.titleHierarchical Linear and Nonlinear Adaptive Learning Model for System Identification and Predictionen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI1910201#Teknik Elektro
dc.identifier.nidnNIDN0005047804


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record