| dc.contributor.author | Prihandini, Rafiantika Megahnia |  | 
| dc.contributor.author | Alfarisi, Ridho |  | 
| dc.contributor.author | Agustin, Ika Hesti |  | 
| dc.contributor.author | Dafik, Dafik |  | 
| dc.date.accessioned | 2018-12-21T07:01:58Z |  | 
| dc.date.available | 2018-12-21T07:01:58Z |  | 
| dc.date.issued | 2018-12-21 |  | 
| dc.identifier.issn | 0972-0871 |  | 
| dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/89104 |  | 
| dc.description | Far East Journal of Mathematical Sciences (FJMS), Volume 103, Number 4, 2018, Pages 819-830 | en_US | 
| dc.description.abstract | We consider a simple, connected and undirected graph ( )EVG ,  with
vertex set
()GV  and edge set ( ).GE  There is a super ( ) H-, da -
antimagic total labeling on the graph ( )EVG ,  if there exists                 
a bijection
{ }EVEVf +→ ...,,2,1: ∪  such that for all
subgraphs isomorphic to
H, the total H-weights ( ) =HW  
∑∑
() ()
+
efvf  form an arithmetic sequence { ( )},1...,,2,, dmadadaa −+++  where 0>a  is the smallest
value,
d is the feasible difference, and m is the number of all 
subgraphs isomorphic to
H. In this paper, we investigate the existence
of super
()H-, da -antimagic total labeling for subdivisions of a fan 
graph
(),
FS  when subgraphs H are cycles. | en_US | 
| dc.language.iso | en | en_US | 
| dc.subject | H-COVERING | en_US | 
| dc.subject | SUPER (A, D ) H-,-ANTIMAGIC TOTAL LABELING | en_US | 
| dc.subject | CYCLE-ANTIMAGIC LABELING | en_US | 
| dc.subject | SUBDIVISIONS OF FAN GRAPH | en_US | 
| dc.title | Super (a, d)-Cycles-Antimagic Labeling of Subdivision of a Fan Graph | en_US | 
| dc.type | Article | en_US | 
| dc.identifier.validator | Taufik 7 November |  |